Author
Listed:
- James R Kellner
- Joseph Kendrick
- Dov F Sax
Abstract
The velocity of climate change and its subsequent impact on vegetation has been well characterized at high elevations and latitudes, including the Arctic. But whether species and ecosystems are keeping pace with the velocity of temperature change is not as well documented. Some evidence indicates that species are less able to keep pace with the velocity of climate change along elevational gradients than latitudinal ones. If substantiated this finding could warrant reconsideration of a current cornerstone of conservation planning. Here we use 27 years of high-resolution satellite data to quantify changes in vegetation cover across elevation within nine mountain ranges in western North America, spanning tropical Mexico to subarctic Canada and from coastal California to interior deserts. Across these ranges we show a uniform pattern at the highest elevations in each range, where increases in vegetation have occurred ubiquitously over the past three decades. At these highest elevations, the realized velocity of vegetation varies among mountain ranges from 19.8–112.8 m · decade-1 (mean = 67.3 m · decade-1). This is equivalent, with respect to gradients in temperature, to a 14.4–104.3 km · decade-1 poleward shift (mean = 56.1 km · decade-1). This realized velocity is 4.4 times larger than previously reported for plants, and is among the fastest rates predicted for the velocity of climate change. However, in three of the five mountain ranges with long-term climate data, realized velocities fail to keep pace with changes in temperature, a finding with important implications for conservation of biological diversity.
Suggested Citation
James R Kellner & Joseph Kendrick & Dov F Sax, 2023.
"High-velocity upward shifts in vegetation are ubiquitous in mountains of western North America,"
PLOS Climate, Public Library of Science, vol. 2(2), pages 1-17, February.
Handle:
RePEc:plo:pclm00:0000071
DOI: 10.1371/journal.pclm.0000071
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pclm00:0000071. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: climate (email available below). General contact details of provider: https://journals.plos.org/climate .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.