IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v141y2017i1d10.1007_s10584-016-1789-8.html
   My bibliography  Save this article

Mapping conservation priorities and connectivity pathways under climate change for tropical ecosystems

Author

Listed:
  • Emily Fung

    (Environmental Modelling Laboratory, Climate Change Program)

  • Pablo Imbach

    (Environmental Modelling Laboratory, Climate Change Program)

  • Lenin Corrales

    (Environmental Modelling Laboratory, Climate Change Program
    Latin University of Costa Rica)

  • Sergio Vilchez

    (Biostatistics Unit, Graduate School)

  • Nelson Zamora

    (National Biodiversity Institute (INBio))

  • Freddy Argotty

    (Environmental Modelling Laboratory, Climate Change Program)

  • Lee Hannah

    (Center for Applied Biodiversity Science, Conservation International)

  • Zayra Ramos

    (Climate Change Program
    University of Idaho)

Abstract

Climate change and land use conversion are global threats to biodiversity. Protected areas and biological corridors have been historically implemented as biodiversity conservation measures and suggested as tools within planning frameworks to respond to climate change. However, few applications to national protected areas systems considering climate change in tropical countries exist. Our goal is to define new priority areas for biodiversity conservation and biological corridors within an existing protected areas network. We aim at preserving samples of all biodiversity under climate change and facilitate species dispersal to reduce the vulnerability of biodiversity. The analysis was based on a three step strategy: i) protect representative samples of various levels of terrestrial biodiversity across protected area systems given future redistributions under climate change, ii) identify and protect areas with reduced climate velocities where populations could persist for relatively longer periods, and iii) ensure species dispersal between conservation areas through climatic connectivity pathways. The study was integrated into a participatory planning approach for biodiversity conservation in Costa Rica. Results showed that there should be an increase of 11 % and 5 % on new conservation areas and biological corridors respectively. Our approach integrates climate change into the design of a network of protected areas for tropical ecosystems and can be applied to other biodiversity rich areas to reduce the vulnerability of biodiversity to global warming.

Suggested Citation

  • Emily Fung & Pablo Imbach & Lenin Corrales & Sergio Vilchez & Nelson Zamora & Freddy Argotty & Lee Hannah & Zayra Ramos, 2017. "Mapping conservation priorities and connectivity pathways under climate change for tropical ecosystems," Climatic Change, Springer, vol. 141(1), pages 77-92, March.
  • Handle: RePEc:spr:climat:v:141:y:2017:i:1:d:10.1007_s10584-016-1789-8
    DOI: 10.1007/s10584-016-1789-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1789-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1789-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    2. Scott R. Loarie & Philip B. Duffy & Healy Hamilton & Gregory P. Asner & Christopher B. Field & David D. Ackerly, 2009. "The velocity of climate change," Nature, Nature, vol. 462(7276), pages 1052-1055, December.
    3. Romain Bertrand & Jonathan Lenoir & Christian Piedallu & Gabriela Riofrío-Dillon & Patrice de Ruffray & Claude Vidal & Jean-Claude Pierrat & Jean-Claude Gégout, 2011. "Changes in plant community composition lag behind climate warming in lowland forests," Nature, Nature, vol. 479(7374), pages 517-520, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gerling, Charlotte & Schöttker, Oliver & Hearne, John, 2022. "The ”climate adaptation problem” in biodiversity conservation: the role of reversible conservation investments in optimal reserve design under climate change," MPRA Paper 114812, University Library of Munich, Germany.
    2. Gerling, Charlotte & Schöttker, Oliver & Hearne, John, 2022. "Keep it or Leave it - the Role of Reversible Conservation Investments in Optimal Reserve Design under Climate Change," VfS Annual Conference 2022 (Basel): Big Data in Economics 264058, Verein für Socialpolitik / German Economic Association.
    3. Gerling, Charlotte & Schöttker, Oliver & Hearne, John, 2022. "Optimal time series in the reserve design problem under climate change," MPRA Paper 114691, University Library of Munich, Germany.
    4. Gerling, Charlotte & Schöttker, Oliver & Hearne, John, 2022. "Irreversible and partly reversible investments in the optimal reserve design problem: the role of flexibility under climate change," MPRA Paper 112089, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    2. Disha Sachan & Pankaj Kumar & Md. Saquib Saharwardi, 2022. "Contemporary climate change velocity for near-surface temperatures over India," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    3. Takuya Iwamura & Kerrie A Wilson & Oscar Venter & Hugh P Possingham, 2010. "A Climatic Stability Approach to Prioritizing Global Conservation Investments," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    4. Katherine Dagon & Daniel P. Schrag, 2019. "Quantifying the effects of solar geoengineering on vegetation," Climatic Change, Springer, vol. 153(1), pages 235-251, March.
    5. Zhang, Pengyi & Liang, Yu & Liu, Bo & Ma, Tianxiao & Wu, Mia M., 2023. "A coupled modelling framework for predicting tree species’ altitudinal migration velocity in montane forest," Ecological Modelling, Elsevier, vol. 484(C).
    6. Morgan Gray & Elisabeth Micheli & Tosha Comendant & Adina Merenlender, 2020. "Quantifying Climate-Wise Connectivity across a Topographically Diverse Landscape," Land, MDPI, vol. 9(10), pages 1-18, September.
    7. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    8. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    9. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    10. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    11. Marcelo Leon & Gino Cornejo & Micaela Calderón & Erika González-Carrión & Hector Florez, 2022. "Effect of Deforestation on Climate Change: A Co-Integration and Causality Approach with Time Series," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    12. Mouhamadou Bamba Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    13. Mouhamadou Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    14. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    15. Tyler M Harms & Kevin T Murphy & Xiaodan Lyu & Shane S Patterson & Karen E Kinkead & Stephen J Dinsmore & Paul W Frese, 2017. "Using landscape habitat associations to prioritize areas of conservation action for terrestrial birds," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.
    16. van der Hoff, Richard & Nascimento, Nathália & Fabrício-Neto, Ailton & Jaramillo-Giraldo, Carolina & Ambrosio, Geanderson & Arieira, Julia & Afonso Nobre, Carlos & Rajão, Raoni, 2022. "Policy-oriented ecosystem services research on tropical forests in South America: A systematic literature review," Ecosystem Services, Elsevier, vol. 56(C).
    17. Brannstrom, Christian, 2001. "Conservation-with-Development Models in Brazil's Agro-Pastoral Landscapes," World Development, Elsevier, vol. 29(8), pages 1345-1359, August.
    18. Brendan Fisher & Stephen Polasky & Thomas Sterner, 2011. "Conservation and Human Welfare: Economic Analysis of Ecosystem Services," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 151-159, February.
    19. Pütz, S. & Groeneveld, J. & Alves, L.F. & Metzger, J.P. & Huth, A., 2011. "Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests," Ecological Modelling, Elsevier, vol. 222(12), pages 1986-1997.
    20. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:141:y:2017:i:1:d:10.1007_s10584-016-1789-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.