IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v484y2023ics0304380023002119.html
   My bibliography  Save this article

A coupled modelling framework for predicting tree species’ altitudinal migration velocity in montane forest

Author

Listed:
  • Zhang, Pengyi
  • Liang, Yu
  • Liu, Bo
  • Ma, Tianxiao
  • Wu, Mia M.

Abstract

Climate change is projected to cause rapid elevational migration of mountain plants. However, it is poorly understood the direction and magnitude of elevational range shifts across species because species’ life history traits are highly individualistic. Species with limited dispersal ability, reproductive rate, and ecological generalization may hardly expand into new regions under climate change. Therefore, such species’ shifts may not keep pace with climate change. We used a new framework for coupling a forest ecosystem model (LINKAGES) and a landscape model (LANDIS PRO), that accounted for climate change, population dynamics, and species’ life history traits to predict tree species’ migrations. We quantified the velocity of tree migration under different climate scenarios. We further investigated the effects of climate change and life history traits on tree species’ elevational migration. We found climate change accelerated the upward shifts at the optimum elevation and the leading edge, and limited the downward migration capacity of tree species at optimum elevation and the rear edge. The velocities of tree species’ elevational shifts (usually < 1.5 m/year) lagged behind those of climate change (about 25 m/year) under the climate change scenario. Range shifts at the leading edge, optimum elevation, and rear edge tended to be associated with temperature, precipitation, and thermal tolerance. However, species’ drought tolerance, shade tolerance, and seed dispersal ability had little effect on the velocity of simulated range shifts. Our results suggest that wide variation in tree range shift is likely driven by individual species’ life history traits in response to interacting environmental factors. This study underscores the importance of understanding the role of species’ life history traits when predicting future tree species’ distribution.

Suggested Citation

  • Zhang, Pengyi & Liang, Yu & Liu, Bo & Ma, Tianxiao & Wu, Mia M., 2023. "A coupled modelling framework for predicting tree species’ altitudinal migration velocity in montane forest," Ecological Modelling, Elsevier, vol. 484(C).
  • Handle: RePEc:eee:ecomod:v:484:y:2023:i:c:s0304380023002119
    DOI: 10.1016/j.ecolmodel.2023.110481
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023002119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mengdi Gao & Shilong Piao & Anping Chen & Hui Yang & Qiang Liu & Yongshuo H. Fu & Ivan A. Janssens, 2019. "Divergent changes in the elevational gradient of vegetation activities over the last 30 years," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Paul R. Elsen & Morgan W. Tingley, 2015. "Global mountain topography and the fate of montane species under climate change," Nature Climate Change, Nature, vol. 5(8), pages 772-776, August.
    3. Romain Bertrand & Jonathan Lenoir & Christian Piedallu & Gabriela Riofrío-Dillon & Patrice de Ruffray & Claude Vidal & Jean-Claude Pierrat & Jean-Claude Gégout, 2011. "Changes in plant community composition lag behind climate warming in lowland forests," Nature, Nature, vol. 479(7374), pages 517-520, November.
    4. Fengyi Guo & Jonathan Lenoir & Timothy C. Bonebrake, 2018. "Land-use change interacts with climate to determine elevational species redistribution," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    5. Terry L. Root & Jeff T. Price & Kimberly R. Hall & Stephen H. Schneider & Cynthia Rosenzweig & J. Alan Pounds, 2003. "Fingerprints of global warming on wild animals and plants," Nature, Nature, vol. 421(6918), pages 57-60, January.
    6. Scott R. Loarie & Philip B. Duffy & Healy Hamilton & Gregory P. Asner & Christopher B. Field & David D. Ackerly, 2009. "The velocity of climate change," Nature, Nature, vol. 462(7276), pages 1052-1055, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    2. Disha Sachan & Pankaj Kumar & Md. Saquib Saharwardi, 2022. "Contemporary climate change velocity for near-surface temperatures over India," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    3. Lucie Kuczynski & Mathieu Chevalier & Pascal Laffaille & Marion Legrand & Gaël Grenouillet, 2017. "Indirect effect of temperature on fish population abundances through phenological changes," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-13, April.
    4. Sandro Lovari & Sara Franceschi & Gianpasquale Chiatante & Lorenzo Fattorini & Niccolò Fattorini & Francesco Ferretti, 2020. "Climatic changes and the fate of mountain herbivores," Climatic Change, Springer, vol. 162(4), pages 2319-2337, October.
    5. Emily Fung & Pablo Imbach & Lenin Corrales & Sergio Vilchez & Nelson Zamora & Freddy Argotty & Lee Hannah & Zayra Ramos, 2017. "Mapping conservation priorities and connectivity pathways under climate change for tropical ecosystems," Climatic Change, Springer, vol. 141(1), pages 77-92, March.
    6. Karyn Tabor & Jennifer Hewson & Hsin Tien & Mariano González-Roglich & David Hole & John W. Williams, 2018. "Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation," Land, MDPI, vol. 7(3), pages 1-14, July.
    7. Mayeul Dalleau & Stéphane Ciccione & Jeanne A Mortimer & Julie Garnier & Simon Benhamou & Jérôme Bourjea, 2012. "Nesting Phenology of Marine Turtles: Insights from a Regional Comparative Analysis on Green Turtle (Chelonia mydas)," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    8. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    9. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    10. Marcelo Leon & Gino Cornejo & Micaela Calderón & Erika González-Carrión & Hector Florez, 2022. "Effect of Deforestation on Climate Change: A Co-Integration and Causality Approach with Time Series," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    11. Mouhamadou Bamba Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    12. Mouhamadou Sylla & Nellie Elguindi & Filippo Giorgi & Dominik Wisser, 2016. "Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century," Climatic Change, Springer, vol. 134(1), pages 241-253, January.
    13. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    14. Ye, Qing & Yang, Xiaoguang & Dai, Shuwei & Chen, Guangsheng & Li, Yong & Zhang, Caixia, 2015. "Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China," Agricultural Water Management, Elsevier, vol. 159(C), pages 35-44.
    15. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    16. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    17. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    18. Rashwan, Sherif S. & Shaaban, Ahmed M. & Al-Suliman, Fahad, 2017. "A comparative study of a small-scale solar PV power plant in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 313-318.
    19. Michael A. Wulder & Jeffrey A. Cardille & Joanne C. White & Bronwyn Rayfield, 2018. "Context and Opportunities for Expanding Protected Areas in Canada," Land, MDPI, vol. 7(4), pages 1-21, November.
    20. Annie Paradis & Joe Elkinton & Katharine Hayhoe & John Buonaccorsi, 2008. "Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 541-554, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:484:y:2023:i:c:s0304380023002119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.