IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2671-d338285.html
   My bibliography  Save this article

MaxEnt Modeling for Predicting the Current and Future Potential Geographical Distribution of Quercus libani Olivier

Author

Listed:
  • H. Oğuz Çoban

    (Forest Engineering Department, Faculty of Forestry, Isparta University of Applied Sciences, Isparta 32260, Turkey)

  • Ömer K. Örücü

    (Landscape Architecture Department, Faculty of Architecture, Süleyman Demirel University, Isparta 32260, Turkey)

  • E. Seda Arslan

    (Landscape Architecture Department, Faculty of Architecture, Süleyman Demirel University, Isparta 32260, Turkey)

Abstract

The purpose of the study was to model the current and potential future distribution of Quercus libani Olivier (Lebanon Oak), a tree species in Turkey, and to predict the changes in its geographical distribution under different climate change scenarios. In this study, 19 bioclimatic variables at a spatial resolution of 30 arc seconds (~1 km 2 ) were used, collected from the WorldClim database. The bioclimatic data with high correlation according to 31 sets of presence data on the species were reduced with principal component analysis (PCA), and the current and potential distribution were identified using MaxEnt 3.4.1 software. In order to predict how the distribution of the species will be affected by climate change, its potential geographical distribution by 2050 and 2070 was modeled under the Representative Concentration Pathways (RCP) RCP 4.5 and RCP 8.5 scenarios of the species using the Community Climate System Model (CCSM, version 4), which is a climate change model based on the report of the fifth Intergovernmental Panel on Climate Change (IPCC). Change analysis was performed to determine the spatial differences between its current and future distribution areas. The study results showed that the suitable areas for the current distribution of Quercus libani Olivier cover 72,819 km 2 . Depending on the CCSM4 climate model, the suitable area will decline to 67,580 km 2 by 2070, according to the RCP 4.5 scenario, or 63,390 km 2 in the RCP 8.5 scenario. This may lead to a reduction in the future population of this species. The change analysis showed that suitable and highly suitable areas will decrease under global climate change scenarios (RCP 4.5 and RCP 8.5) for both current and future potential distribution areas. In this context, our study results indicate that for the management of this species, protective environmental measures should be taken, and climate change models need to be considered in land use and forest management planning.

Suggested Citation

  • H. Oğuz Çoban & Ömer K. Örücü & E. Seda Arslan, 2020. "MaxEnt Modeling for Predicting the Current and Future Potential Geographical Distribution of Quercus libani Olivier," Sustainability, MDPI, vol. 12(7), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2671-:d:338285
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2671/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2671/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dandan Zhao & Hong S. He & Wen J. Wang & Lei Wang & Haibo Du & Kai Liu & Shengwei Zong, 2018. "Predicting Wetland Distribution Changes under Climate Change and Human Activities in a Mid- and High-Latitude Region," Sustainability, MDPI, vol. 10(3), pages 1-14, March.
    2. Romain Bertrand & Jonathan Lenoir & Christian Piedallu & Gabriela Riofrío-Dillon & Patrice de Ruffray & Claude Vidal & Jean-Claude Pierrat & Jean-Claude Gégout, 2011. "Changes in plant community composition lag behind climate warming in lowland forests," Nature, Nature, vol. 479(7374), pages 517-520, November.
    3. Wen Wu & Yuehui Li & Yuanman Hu & Chunliang Xiu & Xiaolu Yan, 2018. "Impacts of Changing Forest Management Areas on Forest Landscapes and Habitat Patterns in Northeastern China," Sustainability, MDPI, vol. 10(4), pages 1-13, April.
    4. Xiaomin Lv & Guangsheng Zhou, 2018. "Climatic Suitability of the Geographic Distribution of Stipa breviflora in Chinese Temperate Grassland under Climate Change," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    5. Shcheglovitova, Mariya & Anderson, Robert P., 2013. "Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes," Ecological Modelling, Elsevier, vol. 269(C), pages 9-17.
    6. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    7. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Özgür Kamer Aksoy, 2022. "Predicting the Potential Distribution Area of the Platanus orientalis L. in Turkey Today and in the Future," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    2. Kalthum O. Radha & Nabaz R. Khwarahm, 2022. "An Integrated Approach to Map the Impact of Climate Change on the Distributions of Crataegus azarolus and Crataegus monogyna in Kurdistan Region, Iraq," Sustainability, MDPI, vol. 14(21), pages 1-31, November.
    3. Robin Lines & Dimitrios Bormpoudakis & Panteleimon Xofis & Joseph Tzanopoulos, 2021. "Modelling Multi-Species Connectivity at the Kafue-Zambezi Interface: Implications for Transboundary Carnivore Conservation," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    4. Arayaselassie Abebe Semu & Tamrat Bekele & Ermias Lulekal & Paloma Cariñanos & Sileshi Nemomissa, 2021. "Projected Impact of Climate Change on Habitat Suitability of a Vulnerable Endemic Vachellia negrii (pic.serm.) kyal. & Boatwr (Fabaceae) in Ethiopia," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    5. Xue, Shuai & Guo, Mengqi & Iqbal, Yasir & Liao, Jianfeng & Yang, Sai & Xiao, Liang & Yi, Zili, 2020. "Mapping current distribution and genetic diversity of the native Miscanthus lutarioriparius across China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Gloria P. Cárdenas & Nino Bravo & Elgar Barboza & Wilian Salazar & Jimmy Ocaña & Miguel Vázquez & Roiser Lobato & Pedro Injante & Carlos I. Arbizu, 2023. "Current and Future Distribution of Shihuahuaco ( Dipteryx spp.) under Climate Change Scenarios in the Central-Eastern Amazon of Peru," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    7. Siyuan Xie & He Si & Hongxia Sun & Qian Zhao & Xiaodong Li & Shiqiang Wang & Junfeng Niu & Zhezhi Wang, 2023. "Predicting the Potential Distribution of the Endangered Plant Eucommia ulmoides in China under the Background of Climate Change," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    8. Jocelyn M. Velázquez-Hernández & José Ariel Ruíz-Corral & Noé Durán-Puga & Diego R. González-Eguiarte & Fernando Santacruz-Ruvalcaba & Giovanni Emmanuel García-Romero & Jesús Germán de la Mora-Castañe, 2023. "Eco-Geography of Dioscorea composita (Hemsl.) in México and Central America under the Influence of Climate Change," Sustainability, MDPI, vol. 15(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arayaselassie Abebe Semu & Tamrat Bekele & Ermias Lulekal & Paloma Cariñanos & Sileshi Nemomissa, 2021. "Projected Impact of Climate Change on Habitat Suitability of a Vulnerable Endemic Vachellia negrii (pic.serm.) kyal. & Boatwr (Fabaceae) in Ethiopia," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    2. Xiaomin Lv & Guangsheng Zhou, 2018. "Climatic Suitability of the Geographic Distribution of Stipa breviflora in Chinese Temperate Grassland under Climate Change," Sustainability, MDPI, vol. 10(10), pages 1-13, October.
    3. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    4. Chateau, J. & Dellink, R. & Lanzi, E. & Magne, B., 2012. "Long-term economic growth and environmental pressure: reference scenarios for future global projections," Conference papers 332249, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Marcelo Leon & Gino Cornejo & Micaela Calderón & Erika González-Carrión & Hector Florez, 2022. "Effect of Deforestation on Climate Change: A Co-Integration and Causality Approach with Time Series," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    6. Gerald Nelson & Jessica Bogard & Keith Lividini & Joanne Arsenault & Malcolm Riley & Timothy B. Sulser & Daniel Mason-D’Croz & Brendan Power & David Gustafson & Mario Herrero & Keith Wiebe & Karen Coo, 2018. "Income growth and climate change effects on global nutrition security to mid-century," Nature Sustainability, Nature, vol. 1(12), pages 773-781, December.
    7. Nicole Costa Resende Ferreira & Jarbas Honorio Miranda, 2021. "Projected changes in corn crop productivity and profitability in Parana, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3236-3250, March.
    8. Jaewon Kwak & Huiseong Noh & Soojun Kim & Vijay P. Singh & Seung Jin Hong & Duckgil Kim & Keonhaeng Lee & Narae Kang & Hung Soo Kim, 2014. "Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea," IJERPH, MDPI, vol. 11(10), pages 1-19, October.
    9. Joan Pau Sierra & Ricard Castrillo & Marc Mestres & César Mösso & Piero Lionello & Luigi Marzo, 2020. "Impact of Climate Change on Wave Energy Resource in the Mediterranean Coast of Morocco," Energies, MDPI, vol. 13(11), pages 1-19, June.
    10. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    11. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    12. Abhiru Aryal & Albira Acharya & Ajay Kalra, 2022. "Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling," Forecasting, MDPI, vol. 4(3), pages 1-22, June.
    13. Tamás Hajdu & Gábor Hajdu, 2022. "Temperature, climate change, and human conception rates: evidence from Hungary," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1751-1776, October.
    14. Meraj Sarwary & Senthilnathan Samiappan & Ghulam Dastgir Khan & Masaood Moahid, 2023. "Climate Change and Cereal Crops Productivity in Afghanistan: Evidence Based on Panel Regression Model," Sustainability, MDPI, vol. 15(14), pages 1-13, July.
    15. Jiufeng Wei & Hufang Zhang & Wanqing Zhao & Qing Zhao, 2017. "Niche shifts and the potential distribution of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) under climate change," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-17, July.
    16. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    17. Heinz-Peter Witzke & Pavel Ciaian & Jacques Delince, 2014. "CAPRI long-term climate change scenario analysis: The AgMIP approach," JRC Research Reports JRC85872, Joint Research Centre.
    18. Syed Asif Ali Naqvi & Abdul Majeed Nadeem & Muhammad Amjed Iqbal & Sadia Ali & Asia Naseem, 2019. "Assessing the Vulnerabilities of Current and Future Production Systems in Punjab, Pakistan," Sustainability, MDPI, vol. 11(19), pages 1-13, September.
    19. Alexis S. Pascaris & Joshua M. Pearce, 2020. "U.S. Greenhouse Gas Emission Bottlenecks: Prioritization of Targets for Climate Liability," Energies, MDPI, vol. 13(15), pages 1-28, August.
    20. Jiban Chandra Deb & Stuart Phinn & Nathalie Butt & Clive A. McAlpine, 2019. "Adaptive management and planning for the conservation of four threatened large Asian mammals in a changing climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(2), pages 259-280, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2671-:d:338285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.