IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v47y2015icp830-843.html
   My bibliography  Save this article

Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?

Author

Listed:
  • Yang, Jiachuan
  • Wang, Zhi-Hua
  • Kaloush, Kamil E.

Abstract

Studies on urban heat island (UHI) have been more than a century after the phenomenon was first discovered in the early 1800s. UHI emerges as the source of many urban environmental problems and exacerbates the living environment in cities. Under the challenges of increasing urbanization and future climate changes, there is a pressing need for sustainable adaptation/mitigation strategies for UHI effects, one popular option being the use of reflective materials. While it is introduced as an effective method to reduce temperature and energy consumption in cities, its impacts on environmental sustainability and large-scale non-local effect are inadequately explored. This paper provides a synthetic overview of potential environmental impacts of reflective materials at a variety of scales, ranging from energy load on a single building to regional hydroclimate. The review shows that mitigation potential of reflective materials depends on a set of factors, including building characteristics, urban environment, meteorological and geographical conditions, to name a few. Precaution needs to be exercised by city planners and policy makers for large-scale deployment of reflective materials before their environmental impacts, especially on regional hydroclimates, are better understood. In general, it is recommended that optimal strategy for UHI needs to be determined on a city-by-city basis, rather than adopting a “one-solution-fits-all” strategy.

Suggested Citation

  • Yang, Jiachuan & Wang, Zhi-Hua & Kaloush, Kamil E., 2015. "Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 830-843.
  • Handle: RePEc:eee:rensus:v:47:y:2015:i:c:p:830-843
    DOI: 10.1016/j.rser.2015.03.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115002452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.03.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    2. Vincent Viguié & Stéphane Hallegatte, 2012. "Trade-offs and synergies in urban climate policies," Nature Climate Change, Nature, vol. 2(5), pages 334-337, May.
    3. Mihalakakou, G. & Santamouris, M. & Asimakopoulos, D., 1994. "Use of the ground for heat dissipation," Energy, Elsevier, vol. 19(1), pages 17-25.
    4. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    5. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    6. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    7. Fung, W.Y. & Lam, K.S. & Hung, W.T. & Pang, S.W. & Lee, Y.L., 2006. "Impact of urban temperature on energy consumption of Hong Kong," Energy, Elsevier, vol. 31(14), pages 2623-2637.
    8. Akbari, H & Konopacki, S & Pomerantz, M, 1999. "Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States," Energy, Elsevier, vol. 24(5), pages 391-407.
    9. James M. Murphy & David M. H. Sexton & David N. Barnett & Gareth S. Jones & Mark J. Webb & Matthew Collins & David A. Stainforth, 2004. "Quantification of modelling uncertainties in a large ensemble of climate change simulations," Nature, Nature, vol. 430(7001), pages 768-772, August.
    10. Yan Zhou & J. Shepherd, 2010. "Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 639-668, March.
    11. Akbari, Hashem & Konopacki, Steven, 2004. "Energy effects of heat-island reduction strategies in Toronto, Canada," Energy, Elsevier, vol. 29(2), pages 191-210.
    12. Akbari, H. & Konopacki, S., 2005. "Calculating energy-saving potentials of heat-island reduction strategies," Energy Policy, Elsevier, vol. 33(6), pages 721-756, April.
    13. Akbari, H, 2003. "Measured energy savings from the application of reflective roofs in two small non-residential buildings," Energy, Elsevier, vol. 28(9), pages 953-967.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Hyungkyoo & Jung, Yoonhee & Oh, Jae In, 2019. "Transformation of urban heat island in the three-center city of Seoul, South Korea: The role of master plans," Land Use Policy, Elsevier, vol. 86(C), pages 328-338.
    2. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    3. Chen, Liutao & Sun, Yong & Zhang, Ning & Yang, Jiachuan & Wang, Dan, 2024. "Quantifying the benefits of BIPV windows in urban environment under climate change: A comparison of three Chinese cities," Renewable Energy, Elsevier, vol. 221(C).
    4. Fabiani, C. & Pisello, A.L. & Bou-Zeid, E. & Yang, J. & Cotana, F., 2019. "Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance," Applied Energy, Elsevier, vol. 247(C), pages 155-170.
    5. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Jaehyun Ha & Yeri Choi & Sugie Lee & Kyushik Oh, 2020. "Diurnal and Seasonal Variations in the Effect of Urban Environmental Factors on Air Temperature: A Consecutive Regression Analysis Approach," IJERPH, MDPI, vol. 17(2), pages 1-21, January.
    7. Chenghao Wang & Jiyun Song & Dachuan Shi & Janet L. Reyna & Henry Horsey & Sarah Feron & Yuyu Zhou & Zutao Ouyang & Ying Li & Robert B. Jackson, 2023. "Impacts of climate change, population growth, and power sector decarbonization on urban building energy use," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Fabiani, C. & Castaldo, V.L. & Pisello, A.L., 2020. "Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building," Applied Energy, Elsevier, vol. 262(C).
    9. Huang, Xinjie & Song, Jiyun & Wang, Chenghao & Chan, Pak Wai, 2022. "Realistic representation of city street-level human thermal stress via a new urban climate-human coupling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Yaning Qiao & Andrew R. Dawson & Tony Parry & Gerardo Flintsch & Wenshun Wang, 2020. "Flexible Pavements and Climate Change: A Comprehensive Review and Implications," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    11. Fabiani, Claudia & Chiatti, Chiara & Pisello, Anna Laura, 2021. "Development of photoluminescent composites for energy efficiency in smart outdoor lighting applications: An experimental and numerical investigation," Renewable Energy, Elsevier, vol. 172(C), pages 1-15.
    12. Siyeon Park & Sugie Lee & Kyushik Oh, 2024. "Defining and Verifying New Local Climate Zones with Three-Dimensional Built Environments and Urban Metabolism," Land, MDPI, vol. 13(9), pages 1-25, September.
    13. Anna Eknes Stagrum & Erlend Andenæs & Tore Kvande & Jardar Lohne, 2020. "Climate Change Adaptation Measures for Buildings—A Scoping Review," Sustainability, MDPI, vol. 12(5), pages 1-18, February.
    14. Rosso, Federica & Golasi, Iacopo & Castaldo, Veronica Lucia & Piselli, Cristina & Pisello, Anna Laura & Salata, Ferdinando & Ferrero, Marco & Cotana, Franco & de Lieto Vollaro, Andrea, 2018. "On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons," Renewable Energy, Elsevier, vol. 118(C), pages 825-839.
    15. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    16. Alessandra Battisti & Flavia Laureti & Michele Zinzi & Giulia Volpicelli, 2018. "Climate Mitigation and Adaptation Strategies for Roofs and Pavements: A Case Study at Sapienza University Campus," Sustainability, MDPI, vol. 10(10), pages 1-30, October.
    17. Yan Rao & Shaohua Zhang & Kun Yang & Yan Ma & Weilin Wang & Lede Niu, 2024. "Scale Differences and Gradient Effects of Local Climate Zone Spatial Pattern on Urban Heat Island Impact—A Case in Guangzhou’s Core Area," Sustainability, MDPI, vol. 16(15), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    2. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    3. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    4. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    5. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    6. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    7. Kong, Fanhua & Sun, Changfeng & Liu, Fengfeng & Yin, Haiwei & Jiang, Fei & Pu, Yingxia & Cavan, Gina & Skelhorn, Cynthia & Middel, Ariane & Dronova, Iryna, 2016. "Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer," Applied Energy, Elsevier, vol. 183(C), pages 1428-1440.
    8. Sophia Kappou & Manolis Souliotis & Spiros Papaefthimiou & Giorgos Panaras & John A. Paravantis & Evanthie Michalena & Jeremy Maxwell Hills & Andreas P. Vouros & Aikaterini Ntymenou & Giouli Mihalakak, 2022. "Cool Pavements: State of the Art and New Technologies," Sustainability, MDPI, vol. 14(9), pages 1-32, April.
    9. Doug, Banting & Hitesh, Doshi & James, Li & Paul, Missios, 2005. "Report on the Environmental Benefits and Costs of Green Roof Technology for the City of Toronto," MPRA Paper 70526, University Library of Munich, Germany.
    10. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    11. Butt, Afaq A. & de Vries, Samuel B. & Loonen, Roel C.G.M. & Hensen, Jan L.M. & Stuiver, Anthonie & van den Ham, Jonathan E.J. & Erich, Bart S.J.F., 2021. "Investigating the energy saving potential of thermochromic coatings on building envelopes," Applied Energy, Elsevier, vol. 291(C).
    12. Testa, Jenna & Krarti, Moncef, 2017. "A review of benefits and limitations of static and switchable cool roof systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 451-460.
    13. Hideki Takebayashi, 2016. "High-Reflectance Technology on Building Façades: Installation Guidelines for Pedestrian Comfort," Sustainability, MDPI, vol. 8(8), pages 1-9, August.
    14. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    15. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    16. Maria Makropoulou, 2017. "Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    17. Alberto Speroni & Andrea Giovanni Mainini & Andrea Zani & Riccardo Paolini & Tommaso Pagnacco & Tiziana Poli, 2022. "Experimental Assessment of the Reflection of Solar Radiation from Façades of Tall Buildings to the Pedestrian Level," Sustainability, MDPI, vol. 14(10), pages 1-29, May.
    18. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    19. Castaldo, Veronica Lucia & Pisello, Anna Laura & Piselli, Cristina & Fabiani, Claudia & Cotana, Franco & Santamouris, Mattheos, 2018. "How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy," Renewable Energy, Elsevier, vol. 127(C), pages 920-935.
    20. Li, Canbing & Zhou, Jinju & Cao, Yijia & Zhong, Jin & Liu, Yu & Kang, Chongqing & Tan, Yi, 2014. "Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season," Applied Energy, Elsevier, vol. 117(C), pages 149-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:47:y:2015:i:c:p:830-843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.