IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p3590-3598.html
   My bibliography  Save this article

Theoretical evaluation of thermal and energy performance of tropical green roofs

Author

Listed:
  • Tsang, S.W.
  • Jim, C.Y.

Abstract

The thermal and energy efficiency of tropical green roofs is assessed by a theoretical model to clarify the contribution of underlying factors. The suitability of 1400 high-rise public housing blocks in Hong Kong for rooftop greening was assessed by remote sensing images. Weather and microclimatic-soil monitoring data of an experimental green roof provided the basis for computations. Roof greening prevented a huge amount of solar energy at 43.9 TJ in one summer from penetrating the buildings to bring significant energy saving. Thermal performance of humid-tropical green roofs, with greater latent heat dissipation, is twice more effective than the temperate ones. The energy balance model shows that solar energy absorption by bare and green roofs depends on shortwave rather than longwave radiation. Heat flux into a building indicates a one-day time lag after a sunshine day. With restricted evapotranspiration, bare roofs have more sensible heat and heat storage than green roofs. The bare roof albedo of 0.15, comparing with 0.30 of green roof, renders 75% higher heat storage. Small increase in convection coefficient from 12 to 16 could amplify 24% and 45% of latent heat dissipation respectively for bare and green roofs. Doubling the soil water availability could halve the heat storage of green roofs.

Suggested Citation

  • Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3590-3598
    DOI: 10.1016/j.energy.2011.03.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211002404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.03.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zmeureanu, R., 2002. "Prediction of the cop of existing rooftop units using artificial neural networks and minimum number of sensors," Energy, Elsevier, vol. 27(9), pages 889-904.
    2. Cheng, Tsung-Chieh & Cheng, Chin-Hsiang & Huang, Zhu-Zin & Liao, Guo-Chun, 2011. "Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications," Energy, Elsevier, vol. 36(1), pages 133-140.
    3. Akbari, H & Konopacki, S & Pomerantz, M, 1999. "Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States," Energy, Elsevier, vol. 24(5), pages 391-407.
    4. Allen, S.R. & Hammond, G.P., 2010. "Thermodynamic and carbon analyses of micro-generators for UK households," Energy, Elsevier, vol. 35(5), pages 2223-2234.
    5. S W Tsang & C Y Jim, 2011. "Game-Theory Approach for Resident Coalitions to Allocate Green-Roof Benefits," Environment and Planning A, , vol. 43(2), pages 363-377, February.
    6. Chen, Qun & Yang, Kangding & Wang, Moran & Pan, Ning & Guo, Zeng-Yuan, 2010. "A new approach to analysis and optimization of evaporative cooling system I: Theory," Energy, Elsevier, vol. 35(6), pages 2448-2454.
    7. Chua, K.J. & Chou, S.K., 2010. "Energy performance of residential buildings in Singapore," Energy, Elsevier, vol. 35(2), pages 667-678.
    8. Santamouris, M. & Pavlou, C. & Doukas, P. & Mihalakakou, G. & Synnefa, A. & Hatzibiros, A. & Patargias, P., 2007. "Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece," Energy, Elsevier, vol. 32(9), pages 1781-1788.
    9. Akbari, H, 2003. "Measured energy savings from the application of reflective roofs in two small non-residential buildings," Energy, Elsevier, vol. 28(9), pages 953-967.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yang & Yu, Hang & Ozaki, Akihito & Dong, Nannan & Zheng, Shiling, 2017. "Influence of plant and soil layer on energy balance and thermal performance of green roof system," Energy, Elsevier, vol. 141(C), pages 1285-1299.
    2. Tan, Taotao & Kong, Fanhua & Yin, Haiwei & Cook, Lauren M. & Middel, Ariane & Yang, Shaoqi, 2023. "Carbon dioxide reduction from green roofs: A comprehensive review of processes, factors, and quantitative methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Zuzana Koscikova & Vladimir Krivtsov, 2023. "Environmental and Social Benefits of Extensive Green Roofs Applied on Bus Shelters in Edinburgh," Land, MDPI, vol. 12(10), pages 1-24, September.
    4. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    5. Jim, C.Y., 2015. "Diurnal and partitioned heat-flux patterns of coupled green-building roof systems," Renewable Energy, Elsevier, vol. 81(C), pages 262-274.
    6. Raji, Babak & Tenpierik, Martin J. & van den Dobbelsteen, Andy, 2015. "The impact of greening systems on building energy performance: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 610-623.
    7. Haishun Xu & Huiying Chen & Chen Qian & Jining Li, 2024. "The Evapotranspiration Characteristics and Evaporative Cooling Effects of Different Vegetation Types on an Intensive Green Roof: Dynamic Performance Under Different Weather Conditions," Sustainability, MDPI, vol. 16(24), pages 1-22, December.
    8. Jim, C.Y., 2014. "Passive warming of indoor space induced by tropical green roof in winter," Energy, Elsevier, vol. 68(C), pages 272-282.
    9. Šuklje, Tomaž & Medved, Sašo & Arkar, Ciril, 2016. "On detailed thermal response modeling of vertical greenery systems as cooling measure for buildings and cities in summer conditions," Energy, Elsevier, vol. 115(P1), pages 1055-1068.
    10. Friedman, Chanoch & Becker, Nir & Erell, Evyatar, 2014. "Energy retrofit of residential building envelopes in Israel: A cost-benefit analysis," Energy, Elsevier, vol. 77(C), pages 183-193.
    11. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    12. Xiao, Min & Lin, Yaolin & Han, Jie & Zhang, Guoqiang, 2014. "A review of green roof research and development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 633-648.
    13. Meng Zhen & Weihan Zou & Wei Ding, 2022. "Cooling effect of roof greening with water misting in a cold region during the summer," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 7093-7114, May.
    14. Jim, C.Y., 2015. "Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls," Energy, Elsevier, vol. 90(P1), pages 926-938.
    15. Matteo Roggero, 2020. "Social dilemmas, policy instruments, and climate adaptation measures: the case of green roofs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 625-642, April.
    16. Ferrante, Patrizia & La Gennusa, Maria & Peri, Giorgia & Rizzo, Gianfranco & Scaccianoce, Gianluca, 2016. "Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system," Energy, Elsevier, vol. 115(P3), pages 1723-1732.
    17. Hashemi, Sajedeh Sadat Ghazizadeh & Mahmud, Hilmi Bin & Ashraf, Muhammad Aqeel, 2015. "Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 669-679.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    2. Zingre, Kishor T. & Wan, Man Pun & Wong, Swee Khian & Toh, Winston Boo Thian & Lee, Irene Yen Leng, 2015. "Modelling of cool roof performance for double-skin roofs in tropical climate," Energy, Elsevier, vol. 82(C), pages 813-826.
    3. Doug, Banting & Hitesh, Doshi & James, Li & Paul, Missios, 2005. "Report on the Environmental Benefits and Costs of Green Roof Technology for the City of Toronto," MPRA Paper 70526, University Library of Munich, Germany.
    4. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    5. Chan, A.L.S. & Chow, T.T., 2013. "Evaluation of Overall Thermal Transfer Value (OTTV) for commercial buildings constructed with green roof," Applied Energy, Elsevier, vol. 107(C), pages 10-24.
    6. Butt, Afaq A. & de Vries, Samuel B. & Loonen, Roel C.G.M. & Hensen, Jan L.M. & Stuiver, Anthonie & van den Ham, Jonathan E.J. & Erich, Bart S.J.F., 2021. "Investigating the energy saving potential of thermochromic coatings on building envelopes," Applied Energy, Elsevier, vol. 291(C).
    7. Testa, Jenna & Krarti, Moncef, 2017. "A review of benefits and limitations of static and switchable cool roof systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 451-460.
    8. Zhu, L. & Hurt, R. & Correa, D. & Boehm, R., 2009. "Comprehensive energy and economic analyses on a zero energy house versus a conventional house," Energy, Elsevier, vol. 34(9), pages 1043-1053.
    9. Yang, Jiachuan & Wang, Zhi-Hua & Kaloush, Kamil E., 2015. "Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 830-843.
    10. Zingre, Kishor T. & Wan, Man Pun & Yang, Xingguo, 2015. "A new RTTV (roof thermal transfer value) calculation method for cool roofs," Energy, Elsevier, vol. 81(C), pages 222-232.
    11. Friedman, Chanoch & Becker, Nir & Erell, Evyatar, 2014. "Energy retrofit of residential building envelopes in Israel: A cost-benefit analysis," Energy, Elsevier, vol. 77(C), pages 183-193.
    12. Zingre, Kishor T. & Wan, Man Pun & Tong, Shanshan & Li, Hua & Chang, Victor W.-C. & Wong, Swee Khian & Thian Toh, Winston Boo & Leng Lee, Irene Yen, 2015. "Modeling of cool roof heat transfer in tropical climate," Renewable Energy, Elsevier, vol. 75(C), pages 210-223.
    13. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    14. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    15. Xu, Mingtian, 2012. "Variational principles in terms of entransy for heat transfer," Energy, Elsevier, vol. 44(1), pages 973-977.
    16. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Menounou, Penelope & Dimopoulos, Panayotis & Kolokotsa, Dionysia & Paravantis, John A. & Tsangrassoulis, Aris & Panaras, Giorgos & Giannako, 2023. "Green roofs as a nature-based solution for improving urban sustainability: Progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    17. Pérez, Gabriel & Vila, Anna & Rincón, Lídia & Solé, Cristian & Cabeza, Luisa F., 2012. "Use of rubber crumbs as drainage layer in green roofs as potential energy improvement material," Applied Energy, Elsevier, vol. 97(C), pages 347-354.
    18. Sofia Pastori & Riccardo Mereu & Enrico Sergio Mazzucchelli & Stefano Passoni & Giovanni Dotelli, 2021. "Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards," Energies, MDPI, vol. 14(1), pages 1-26, January.
    19. Brunetti, Giuseppe & Porti, Michele & Piro, Patrizia, 2018. "Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate," Applied Energy, Elsevier, vol. 221(C), pages 204-219.
    20. Yu Zhai & Xu Zhao & Zhifeng Dong, 2022. "Research on Performance Optimization of Gravity Heat Pipe for Mine Return Air," Energies, MDPI, vol. 15(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3590-3598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.