IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v28y2003i9p953-967.html
   My bibliography  Save this article

Measured energy savings from the application of reflective roofs in two small non-residential buildings

Author

Listed:
  • Akbari, H

Abstract

Energy use and environmental parameters were monitored in two small (14.9 m2) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5 kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125 kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the pre-fabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

Suggested Citation

  • Akbari, H, 2003. "Measured energy savings from the application of reflective roofs in two small non-residential buildings," Energy, Elsevier, vol. 28(9), pages 953-967.
  • Handle: RePEc:eee:energy:v:28:y:2003:i:9:p:953-967
    DOI: 10.1016/S0360-5442(03)00032-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054420300032X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(03)00032-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    2. Tiago Souto & Margarida Almeida & Vítor Leal & João Machado & Adélio Mendes, 2020. "Total Solar Reflectance Optimization of the External Paint Coat in Residential Buildings Located in Mediterranean Climates," Energies, MDPI, vol. 13(11), pages 1-18, May.
    3. Wendy Miller & Glenn Crompton & John Bell, 2015. "Analysis of Cool Roof Coatings for Residential Demand Side Management in Tropical Australia," Energies, MDPI, vol. 8(6), pages 1-16, June.
    4. Zhu, L. & Hurt, R. & Correa, D. & Boehm, R., 2009. "Comprehensive energy and economic analyses on a zero energy house versus a conventional house," Energy, Elsevier, vol. 34(9), pages 1043-1053.
    5. Testa, Jenna & Krarti, Moncef, 2017. "A review of benefits and limitations of static and switchable cool roof systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 451-460.
    6. Alberto Speroni & Andrea Giovanni Mainini & Andrea Zani & Riccardo Paolini & Tommaso Pagnacco & Tiziana Poli, 2022. "Experimental Assessment of the Reflection of Solar Radiation from Façades of Tall Buildings to the Pedestrian Level," Sustainability, MDPI, vol. 14(10), pages 1-29, May.
    7. Doug, Banting & Hitesh, Doshi & James, Li & Paul, Missios, 2005. "Report on the Environmental Benefits and Costs of Green Roof Technology for the City of Toronto," MPRA Paper 70526, University Library of Munich, Germany.
    8. Butt, Afaq A. & de Vries, Samuel B. & Loonen, Roel C.G.M. & Hensen, Jan L.M. & Stuiver, Anthonie & van den Ham, Jonathan E.J. & Erich, Bart S.J.F., 2021. "Investigating the energy saving potential of thermochromic coatings on building envelopes," Applied Energy, Elsevier, vol. 291(C).
    9. Yang, Jiachuan & Wang, Zhi-Hua & Kaloush, Kamil E., 2015. "Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 830-843.
    10. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    11. Jo, J.H. & Carlson, J. & Golden, J.S. & Bryan, H., 2010. "Sustainable urban energy: Development of a mesoscale assessment model for solar reflective roof technologies," Energy Policy, Elsevier, vol. 38(12), pages 7951-7959, December.
    12. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    13. Kontoleon, Karolos J. & Saboor, Shaik & Mazzeo, Domenico & Ahmad, Jawad & Cuce, Erdem, 2023. "Thermal sensitivity and potential cooling-related energy saving of masonry walls through the lens of solar heat-rejecting paints at varying orientations," Applied Energy, Elsevier, vol. 329(C).
    14. Friedman, Chanoch & Becker, Nir & Erell, Evyatar, 2014. "Energy retrofit of residential building envelopes in Israel: A cost-benefit analysis," Energy, Elsevier, vol. 77(C), pages 183-193.
    15. Yu Zhang & Lei Zhang & Luyao Ma & Qinglin Meng & Peng Ren, 2019. "Cooling Benefits of an Extensive Green Roof and Sensitivity Analysis of Its Parameters in Subtropical Areas," Energies, MDPI, vol. 12(22), pages 1-22, November.
    16. Anna Laura Pisello & Federico Rossi & Franco Cotana, 2014. "Summer and Winter Effect of Innovative Cool Roof Tiles on the Dynamic Thermal Behavior of Buildings," Energies, MDPI, vol. 7(4), pages 1-19, April.
    17. Hideki Takebayashi, 2016. "High-Reflectance Technology on Building Façades: Installation Guidelines for Pedestrian Comfort," Sustainability, MDPI, vol. 8(8), pages 1-9, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:28:y:2003:i:9:p:953-967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.