IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2729-d364414.html
   My bibliography  Save this article

Total Solar Reflectance Optimization of the External Paint Coat in Residential Buildings Located in Mediterranean Climates

Author

Listed:
  • Tiago Souto

    (Corporação Industrial do Norte, S.A., avenida Dom Mendo, n. 831, Apartado 1008, 4471-909 Maia, Portugal)

  • Margarida Almeida

    (Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • Vítor Leal

    (Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal)

  • João Machado

    (Corporação Industrial do Norte, S.A., avenida Dom Mendo, n. 831, Apartado 1008, 4471-909 Maia, Portugal)

  • Adélio Mendes

    (Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal)

Abstract

This work addresses the effect of the total solar reflectance (TSR) value of paints applied in residential buildings upon their thermal performance. A semi-detached residential building was modeled in the ESP-r software, and taken as the basis for parametric studies which assessed the effects of variations in (i) the TSR values; (ii) the thermal characteristics of the building envelope; (iii) the location/climate; and: (iv) the way how the indoor temperature is controlled. The parametric studies were used to find optimal TSR values for each combination of Location + Building envelope characteristics (mainly the existence of thermal insulation). It was concluded that paints having a carefully chosen TSR value lead to better indoor thermal temperatures if the buildings have no mechanical heating or cooling, or to energy savings of up to 32% if they do.

Suggested Citation

  • Tiago Souto & Margarida Almeida & Vítor Leal & João Machado & Adélio Mendes, 2020. "Total Solar Reflectance Optimization of the External Paint Coat in Residential Buildings Located in Mediterranean Climates," Energies, MDPI, vol. 13(11), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2729-:d:364414
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aktacir, Mehmet Azmi & Büyükalaca, Orhan & YIlmaz, Tuncay, 2010. "A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions," Applied Energy, Elsevier, vol. 87(2), pages 599-607, February.
    2. Wang, Cheng & Zhu, Ye & Guo, Xiaofeng, 2019. "Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Vasco Granadeiro & Margarida Almeida & Tiago Souto & Vítor Leal & João Machado & Adélio Mendes, 2020. "Thermochromic Paints on External Surfaces: Impact Assessment for a Residential Building through Thermal and Energy Simulation," Energies, MDPI, vol. 13(8), pages 1-16, April.
    4. Akbari, H, 2003. "Measured energy savings from the application of reflective roofs in two small non-residential buildings," Energy, Elsevier, vol. 28(9), pages 953-967.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vítor Leal, 2021. "Buildings Energy Efficiency and Innovative Energy Systems," Energies, MDPI, vol. 14(16), pages 1-5, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Butt, Afaq A. & de Vries, Samuel B. & Loonen, Roel C.G.M. & Hensen, Jan L.M. & Stuiver, Anthonie & van den Ham, Jonathan E.J. & Erich, Bart S.J.F., 2021. "Investigating the energy saving potential of thermochromic coatings on building envelopes," Applied Energy, Elsevier, vol. 291(C).
    2. Kontoleon, Karolos J. & Saboor, Shaik & Mazzeo, Domenico & Ahmad, Jawad & Cuce, Erdem, 2023. "Thermal sensitivity and potential cooling-related energy saving of masonry walls through the lens of solar heat-rejecting paints at varying orientations," Applied Energy, Elsevier, vol. 329(C).
    3. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    4. Balghouthi, M. & Chahbani, M.H. & Guizani, A., 2012. "Investigation of a solar cooling installation in Tunisia," Applied Energy, Elsevier, vol. 98(C), pages 138-148.
    5. Eva Crespo Sánchez & David Masip Vilà, 2022. "Thermochromic Materials as Passive Roof Technology: Their Impact on Building Energy Performance," Energies, MDPI, vol. 15(6), pages 1-25, March.
    6. Alberto Speroni & Andrea Giovanni Mainini & Andrea Zani & Riccardo Paolini & Tommaso Pagnacco & Tiziana Poli, 2022. "Experimental Assessment of the Reflection of Solar Radiation from Façades of Tall Buildings to the Pedestrian Level," Sustainability, MDPI, vol. 14(10), pages 1-29, May.
    7. Pan, Dongmei & Chan, Mingyin & Deng, Shiming & Lin, Zhongping, 2012. "The effects of external wall insulation thickness on annual cooling and heating energy uses under different climates," Applied Energy, Elsevier, vol. 97(C), pages 313-318.
    8. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    9. Li, Canbing & Zhou, Jinju & Cao, Yijia & Zhong, Jin & Liu, Yu & Kang, Chongqing & Tan, Yi, 2014. "Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season," Applied Energy, Elsevier, vol. 117(C), pages 149-156.
    10. Jin Wei & Fangsi Yu & Haixiu Liang & Maohui Luo, 2020. "Thermal Performance of Vertical Courtyard System in Office Buildings Under Typical Hot Days in Hot-Humid Climate Area: A Case Study," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    11. Anna Laura Pisello & Federico Rossi & Franco Cotana, 2014. "Summer and Winter Effect of Innovative Cool Roof Tiles on the Dynamic Thermal Behavior of Buildings," Energies, MDPI, vol. 7(4), pages 1-19, April.
    12. Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    13. Huang, Yu & Niu, Jian-lei & Chung, Tse-ming, 2013. "Study on performance of energy-efficient retrofitting measures on commercial building external walls in cooling-dominant cities," Applied Energy, Elsevier, vol. 103(C), pages 97-108.
    14. Wendy Miller & Glenn Crompton & John Bell, 2015. "Analysis of Cool Roof Coatings for Residential Demand Side Management in Tropical Australia," Energies, MDPI, vol. 8(6), pages 1-16, June.
    15. Cui, Shuang & Ahn, Chihyung & Wingert, Matthew C. & Leung, David & Cai, Shengqiang & Chen, Renkun, 2016. "Bio-inspired effective and regenerable building cooling using tough hydrogels," Applied Energy, Elsevier, vol. 168(C), pages 332-339.
    16. Doug, Banting & Hitesh, Doshi & James, Li & Paul, Missios, 2005. "Report on the Environmental Benefits and Costs of Green Roof Technology for the City of Toronto," MPRA Paper 70526, University Library of Munich, Germany.
    17. Fuerst, Franz & Oikarinen, Elias & Harjunen, Oskari, 2016. "Green signalling effects in the market for energy-efficient residential buildings," Applied Energy, Elsevier, vol. 180(C), pages 560-571.
    18. Sinha, Anshuman & Thakkar, Harshul & Rezaei, Fateme & Kawajiri, Yoshiaki & Realff, Matthew J., 2022. "Reduced building energy consumption by combined indoor CO2 and H2O composition control," Applied Energy, Elsevier, vol. 322(C).
    19. Vítor Leal, 2021. "Buildings Energy Efficiency and Innovative Energy Systems," Energies, MDPI, vol. 14(16), pages 1-5, August.
    20. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2729-:d:364414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.