IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1383-d509526.html
   My bibliography  Save this article

A New Modeling Approach for Low-Carbon District Energy System Planning

Author

Listed:
  • Abolfazl Rezaei

    (Canada Excellence Research Chair Next Generation Cities, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, QC H3G 1M8, Canada)

  • Bahador Samadzadegan

    (Canada Excellence Research Chair Next Generation Cities, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, QC H3G 1M8, Canada)

  • Hadise Rasoulian

    (Canada Excellence Research Chair Next Generation Cities, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, QC H3G 1M8, Canada)

  • Saeed Ranjbar

    (Canada Excellence Research Chair Next Generation Cities, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, QC H3G 1M8, Canada)

  • Soroush Samareh Abolhassani

    (Canada Excellence Research Chair Next Generation Cities, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, QC H3G 1M8, Canada)

  • Azin Sanei

    (Canada Excellence Research Chair Next Generation Cities, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, QC H3G 1M8, Canada)

  • Ursula Eicker

    (Canada Excellence Research Chair Next Generation Cities, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, QC H3G 1M8, Canada)

Abstract

Designing district-scale energy systems with renewable energy sources is still a challenge, as it involves modeling of multiple loads and many options to combine energy system components. In the current study, two different energy system scenarios for a district in Montreal/Canada are compared to choose the most cost-effective and energy-efficient energy system scenario for the studied area. In the first scenario, a decentral energy system comprised of ground-source heat pumps provides heating and cooling for each building, while, in the second scenario, a district heating and cooling system with a central heat pump is designed. Firstly, heating and cooling demand are calculated in a completely automated process using an Automatic Urban Building Energy Modeling System approach (AUBEM). Then, the Integrated Simulation Environment Language (INSEL) is used to prepare a model for the energy system. The proposed model provides heat pump capacity and the number of required heat pumps (HP), the number of photovoltaic (PV) panels, and AC electricity generation potential using PV. After designing the energy systems, the piping system, heat losses, and temperature distribution of the centralized scenario are calculated using a MATLAB code. Finally, two scenarios are assessed economically using the Levelized Cost of Energy (LCOE) method. The results show that the central scenario’s total HP electricity consumption is 17% lower than that of the decentral systems and requires less heat pump capacity than the decentral scenario. The LCOE of both scenarios varies from 0.04 to 0.07 CAD/kWh, which is cheaper than the electricity cost in Quebec (0.08 CAD/kWh). A comparison between both scenarios shows that the centralized energy system is cost-beneficial for all buildings and, after applying the discounts, the LCOE of this scenario decreases to 0.04 CAD/kWh.

Suggested Citation

  • Abolfazl Rezaei & Bahador Samadzadegan & Hadise Rasoulian & Saeed Ranjbar & Soroush Samareh Abolhassani & Azin Sanei & Ursula Eicker, 2021. "A New Modeling Approach for Low-Carbon District Energy System Planning," Energies, MDPI, vol. 14(5), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1383-:d:509526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1383/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1383/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guelpa, Elisa & Marincioni, Ludovica & Verda, Vittorio, 2019. "Towards 4th generation district heating: Prediction of building thermal load for optimal management," Energy, Elsevier, vol. 171(C), pages 510-522.
    2. Yang, Xiaochen & Svendsen, Svend, 2018. "Ultra-low temperature district heating system with central heat pump and local boosters for low-heat-density area: Analyses on a real case in Denmark," Energy, Elsevier, vol. 159(C), pages 243-251.
    3. Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    5. Dalla Rosa, A. & Christensen, J.E., 2011. "Low-energy district heating in energy-efficient building areas," Energy, Elsevier, vol. 36(12), pages 6890-6899.
    6. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    7. Rämä, M. & Mohammadi, S., 2017. "Comparison of distributed and centralised integration of solar heat in a district heating system," Energy, Elsevier, vol. 137(C), pages 649-660.
    8. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    9. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    10. Dotzauer, Erik, 2002. "Simple model for prediction of loads in district-heating systems," Applied Energy, Elsevier, vol. 73(3-4), pages 277-284, November.
    11. Brange, Lisa & Englund, Jessica & Lauenburg, Patrick, 2016. "Prosumers in district heating networks – A Swedish case study," Applied Energy, Elsevier, vol. 164(C), pages 492-500.
    12. Wang, Cheng & Zhu, Ye & Guo, Xiaofeng, 2019. "Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Brand, Marek & Svendsen, Svend, 2013. "Renewable-based low-temperature district heating for existing buildings in various stages of refurbishment," Energy, Elsevier, vol. 62(C), pages 311-319.
    14. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    15. Hennessy, Jay & Li, Hailong & Wallin, Fredrik & Thorin, Eva, 2018. "Towards smart thermal grids: Techno-economic feasibility of commercial heat-to-power technologies for district heating," Applied Energy, Elsevier, vol. 228(C), pages 766-776.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariusz Bajno & Łukasz Bednarz & Agnieszka Grzybowska, 2021. "The Role and Place of Traditional Chimney System Solutions in Environmental Progress and in Reducing Energy Consumption," Energies, MDPI, vol. 14(16), pages 1-32, August.
    2. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    3. Gregor Becker & Christian Klemm & Peter Vennemann, 2022. "Open Source District Heating Modeling Tools—A Comparative Study," Energies, MDPI, vol. 15(21), pages 1-20, November.
    4. Christoph Bahret & Ludger Eltrop, 2021. "Cost-Optimized Heat and Power Supply for Residential Buildings: The Cost-Reducing Effect of Forming Smart Energy Neighborhoods," Energies, MDPI, vol. 14(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
    2. Michael-Allan Millar & Bruce Elrick & Greg Jones & Zhibin Yu & Neil M. Burnside, 2020. "Roadblocks to Low Temperature District Heating," Energies, MDPI, vol. 13(22), pages 1-21, November.
    3. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    4. Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
    5. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    6. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    7. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    8. Michael-Allan Millar & Neil M. Burnside & Zhibin Yu, 2019. "District Heating Challenges for the UK," Energies, MDPI, vol. 12(2), pages 1-21, January.
    9. Guelpa, Elisa & Verda, Vittorio, 2020. "Automatic fouling detection in district heating substations: Methodology and tests," Applied Energy, Elsevier, vol. 258(C).
    10. Nguyen, Truong & Gustavsson, Leif & Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe, 2020. "Implications of supplying district heat to a new urban residential area in Sweden," Energy, Elsevier, vol. 194(C).
    11. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    12. Vivian, Jacopo & Emmi, Giuseppe & Zarrella, Angelo & Jobard, Xavier & Pietruschka, Dirk & De Carli, Michele, 2018. "Evaluating the cost of heat for end users in ultra low temperature district heating networks with booster heat pumps," Energy, Elsevier, vol. 153(C), pages 788-800.
    13. Rämä, Miika & Wahlroos, Mikko, 2018. "Introduction of new decentralised renewable heat supply in an existing district heating system," Energy, Elsevier, vol. 154(C), pages 68-79.
    14. Brange, Lisa & Lauenburg, Patrick & Sernhed, Kerstin & Thern, Marcus, 2017. "Bottlenecks in district heating networks and how to eliminate them – A simulation and cost study," Energy, Elsevier, vol. 137(C), pages 607-616.
    15. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    16. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
    17. Nord, Natasa & Løve Nielsen, Elise Kristine & Kauko, Hanne & Tereshchenko, Tymofii, 2018. "Challenges and potentials for low-temperature district heating implementation in Norway," Energy, Elsevier, vol. 151(C), pages 889-902.
    18. Yuan, Jianjuan & Zhou, Zhihua & Tang, Huajie & Wang, Chendong & Lu, Shilei & Han, Zhao & Zhang, Ji & Sheng, Ying, 2020. "Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system," Energy, Elsevier, vol. 199(C).
    19. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
    20. Hanne Kauko & Daniel Rohde & Armin Hafner, 2020. "Local Heating Networks with Waste Heat Utilization: Low or Medium Temperature Supply?," Energies, MDPI, vol. 13(4), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1383-:d:509526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.