IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v81y2015icp222-232.html
   My bibliography  Save this article

A new RTTV (roof thermal transfer value) calculation method for cool roofs

Author

Listed:
  • Zingre, Kishor T.
  • Wan, Man Pun
  • Yang, Xingguo

Abstract

Methods to estimate RTTV (roof thermal transfer value, or equivalent) currently adopted by numerous South East Asian countries have different inherent limitations in accurately evaluating the thermal performance of cool roofs. These existing methods either use a fixed value to represent the solar reflectance effect or assume a linear correlation between annual-averaged conduction heat gain and solar absorptance, which are shown to be inaccurate. In this paper a new RTTV model is proposed with new formulation for modelling the equivalent thermal resistance increment due to the solar reflectance effect on opaque roofs using the previously developed CRHT (Cool Roof Heat Transfer) model. The new formulation is incorporated into the U-value estimation of the heat conduction gain component. The new RTTV model is validated against computational simulations and experiments on an air-conditioned test building with flat concrete roof in Singapore. The Current RTTV model adopted in Singapore gives large error in RTTV estimation for the test building at high-reflectance (over-estimates by 20 times at reflectance = 0.90) whereas the new RTTV model gives much more accurate estimations (maximum error within 12%). The proposed method for new RTTV model formulation is also applicable to other similar models, and is not limited by climate conditions.

Suggested Citation

  • Zingre, Kishor T. & Wan, Man Pun & Yang, Xingguo, 2015. "A new RTTV (roof thermal transfer value) calculation method for cool roofs," Energy, Elsevier, vol. 81(C), pages 222-232.
  • Handle: RePEc:eee:energy:v:81:y:2015:i:c:p:222-232
    DOI: 10.1016/j.energy.2014.12.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214013887
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.12.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boixo, Sergio & Diaz-Vicente, Marian & Colmenar, Antonio & Castro, Manuel Alonso, 2012. "Potential energy savings from cool roofs in Spain and Andalusia," Energy, Elsevier, vol. 38(1), pages 425-438.
    2. Zingre, Kishor T. & Wan, Man Pun & Tong, Shanshan & Li, Hua & Chang, Victor W.-C. & Wong, Swee Khian & Thian Toh, Winston Boo & Leng Lee, Irene Yen, 2015. "Modeling of cool roof heat transfer in tropical climate," Renewable Energy, Elsevier, vol. 75(C), pages 210-223.
    3. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    4. Wittkopf, Stephen & Valliappan, Selvam & Liu, Lingyun & Ang, Kian Seng & Cheng, Seng Chye Jonathan, 2012. "Analytical performance monitoring of a 142.5kWp grid-connected rooftop BIPV system in Singapore," Renewable Energy, Elsevier, vol. 47(C), pages 9-20.
    5. Tan, Reginald B.H. & Wijaya, David & Khoo, Hsien H., 2010. "LCI (Life cycle inventory) analysis of fuels and electricity generation in Singapore," Energy, Elsevier, vol. 35(12), pages 4910-4916.
    6. Chan, A.L.S. & Chow, T.T., 2013. "Evaluation of Overall Thermal Transfer Value (OTTV) for commercial buildings constructed with green roof," Applied Energy, Elsevier, vol. 107(C), pages 10-24.
    7. Akbari, H & Konopacki, S & Pomerantz, M, 1999. "Cooling energy savings potential of reflective roofs for residential and commercial buildings in the United States," Energy, Elsevier, vol. 24(5), pages 391-407.
    8. Kaşka, Ö. & Yumrutaş, R., 2008. "Comparison of experimental and theoretical results for the transient heat flow through multilayer walls and flat roofs," Energy, Elsevier, vol. 33(12), pages 1816-1823.
    9. Chua, K.J. & Chou, S.K., 2010. "Energy performance of residential buildings in Singapore," Energy, Elsevier, vol. 35(2), pages 667-678.
    10. Akbari, Hashem & Konopacki, Steven, 2004. "Energy effects of heat-island reduction strategies in Toronto, Canada," Energy, Elsevier, vol. 29(2), pages 191-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2023. "Acceleration algorithms for long-wavelength radiation integral in the annual simulation of radiative cooling in buildings," Renewable Energy, Elsevier, vol. 202(C), pages 255-269.
    2. Lei, Jiawei & Kumarasamy, Karthikeyan & Zingre, Kishor T. & Yang, Jinglei & Wan, Man Pun & Yang, En-Hua, 2017. "Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics," Applied Energy, Elsevier, vol. 190(C), pages 57-63.
    3. Kishor T. Zingre & Kiran Kumar D. E. V. S. & Man Pun Wan, 2020. "Analysing the Effect of Substrate Properties on Building Envelope Thermal Performance in Various Climates," Energies, MDPI, vol. 13(19), pages 1-8, October.
    4. Fang, Hong & Zhao, Dongliang & Yuan, Jinchao & Aili, Ablimit & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2019. "Performance evaluation of a metamaterial-based new cool roof using improved Roof Thermal Transfer Value model," Applied Energy, Elsevier, vol. 248(C), pages 589-599.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zingre, Kishor T. & Wan, Man Pun & Wong, Swee Khian & Toh, Winston Boo Thian & Lee, Irene Yen Leng, 2015. "Modelling of cool roof performance for double-skin roofs in tropical climate," Energy, Elsevier, vol. 82(C), pages 813-826.
    2. Zingre, Kishor T. & Wan, Man Pun & Tong, Shanshan & Li, Hua & Chang, Victor W.-C. & Wong, Swee Khian & Thian Toh, Winston Boo & Leng Lee, Irene Yen, 2015. "Modeling of cool roof heat transfer in tropical climate," Renewable Energy, Elsevier, vol. 75(C), pages 210-223.
    3. Qin, Yinghong & Zhang, Mingyi & Hiller, Jacob E., 2017. "Theoretical and experimental studies on the daily accumulative heat gain from cool roofs," Energy, Elsevier, vol. 129(C), pages 138-147.
    4. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    5. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    6. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    7. Jaehong Park & Sugie Lee, 2022. "Effects of a Cool Roof System on the Mitigation of Building Temperature: Empirical Evidence from a Field Experiment," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    8. Doug, Banting & Hitesh, Doshi & James, Li & Paul, Missios, 2005. "Report on the Environmental Benefits and Costs of Green Roof Technology for the City of Toronto," MPRA Paper 70526, University Library of Munich, Germany.
    9. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    10. Yeong Huei Lee & Mugahed Amran & Yee Yong Lee & Ahmad Beng Hong Kueh & Siaw Fui Kiew & Roman Fediuk & Nikolai Vatin & Yuriy Vasilev, 2021. "Thermal Behavior and Energy Efficiency of Modified Concretes in the Tropical Climate: A Systemic Review," Sustainability, MDPI, vol. 13(21), pages 1, October.
    11. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
    12. Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).
    13. Gao, Yafeng & Xu, Jiangmin & Yang, Shichao & Tang, Xiaomin & Zhou, Quan & Ge, Jing & Xu, Tengfang & Levinson, Ronnen, 2014. "Cool roofs in China: Policy review, building simulations, and proof-of-concept experiments," Energy Policy, Elsevier, vol. 74(C), pages 190-214.
    14. Mirrahimi, Seyedehzahra & Mohamed, Mohd Farid & Haw, Lim Chin & Ibrahim, Nik Lukman Nik & Yusoff, Wardah Fatimah Mohammad & Aflaki, Ardalan, 2016. "The effect of building envelope on the thermal comfort and energy saving for high-rise buildings in hot–humid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1508-1519.
    15. Yang, Jiachuan & Wang, Zhi-Hua & Kaloush, Kamil E., 2015. "Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 830-843.
    16. Athanasios Tzempelikos & Seungjae Lee, 2021. "Cool Roofs in the US: The Impact of Roof Reflectivity, Insulation and Attachment Method on Annual Energy Cost," Energies, MDPI, vol. 14(22), pages 1-17, November.
    17. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    18. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    19. Lee, Jae Bum & Park, Jae Wan & Yoon, Jong Ho & Baek, Nam Choon & Kim, Dai Kon & Shin, U. Cheul, 2014. "An empirical study of performance characteristics of BIPV (Building Integrated Photovoltaic) system for the realization of zero energy building," Energy, Elsevier, vol. 66(C), pages 25-34.
    20. Niamsuwan, Sathit & Kittisupakorn, Paisan & Suwatthikul, Ajaree, 2015. "Enhancement of energy efficiency in a paint curing oven via CFD approach: Case study in an air-conditioning plant," Applied Energy, Elsevier, vol. 156(C), pages 465-477.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:81:y:2015:i:c:p:222-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.