IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i19p7093-d420692.html
   My bibliography  Save this article

Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone

Author

Listed:
  • Patryk Antoszewski

    (Department of Landscape Architecture, Poznań University of Life Sciences, Dąbrowskiego 159 Street, 60-594 Poznań, Poland)

  • Dariusz Świerk

    (Department of Landscape Architecture, Poznań University of Life Sciences, Dąbrowskiego 159 Street, 60-594 Poznań, Poland)

  • Michał Krzyżaniak

    (Department of Landscape Architecture, Poznań University of Life Sciences, Dąbrowskiego 159 Street, 60-594 Poznań, Poland)

Abstract

Urban Heat Island (UHI) effect relates to the occurrence of a positive heat balance, compared to suburban and extra-urban areas in a high degree of urbanized cities. It is necessary to develop effective UHI prevention and mitigation strategies, one of which is blue-green infrastructure (BGI). Most research work comparing impact of BGI parameters on UHI mitigation is based on data measured in different climate zones. This makes the implication of nature-based solutions difficult in cities with different climate zones due to the differences in the vegetation time of plants. The aim of our research was to select the most statistically significant quality parameters of BGI elements in terms of preventing UHI. The normative four-step data delimitation procedure in systematic reviews related to UHI literature was used, and temperate climate (C) zone was determined as the UHI crisis area. As a result of delimitation, 173 publications qualified for literature review were obtained (488 rejected). We prepared a detailed literature data analysis and the CVA model—a canonical variation of Fisher’s linear discriminant analysis (LDA). Our research has indicated that the BGI object parameters are essential for UHI mitigation, which are the following: area of water objects and green areas, street greenery leaf size (LAI), green roofs hydration degree, and green walls location. Data obtained from the statistical analysis will be used to create the dynamic BGI modeling algorithm, which is the main goal of the series of articles in the future.

Suggested Citation

  • Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:19:p:7093-:d:420692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/19/7093/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/19/7093/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsang, S.W. & Jim, C.Y., 2011. "Theoretical evaluation of thermal and energy performance of tropical green roofs," Energy, Elsevier, vol. 36(5), pages 3590-3598.
    2. Kleerekoper, Laura & van Esch, Marjolein & Salcedo, Tadeo Baldiri, 2012. "How to make a city climate-proof, addressing the urban heat island effect," Resources, Conservation & Recycling, Elsevier, vol. 64(C), pages 30-38.
    3. M. Žuvela-Aloise & R. Koch & S. Buchholz & B. Früh, 2016. "Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna," Climatic Change, Springer, vol. 135(3), pages 425-438, April.
    4. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    5. Ferrante, Patrizia & La Gennusa, Maria & Peri, Giorgia & Rizzo, Gianfranco & Scaccianoce, Gianluca, 2016. "Vegetation growth parameters and leaf temperature: Experimental results from a six plots green roofs' system," Energy, Elsevier, vol. 115(P3), pages 1723-1732.
    6. Tsiros, Ioannis X., 2010. "Assessment and energy implications of street air temperature cooling by shade tress in Athens (Greece) under extremely hot weather conditions," Renewable Energy, Elsevier, vol. 35(8), pages 1866-1869.
    7. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    8. Davies, Clive & Lafortezza, Raffaele, 2017. "Urban green infrastructure in Europe: Is greenspace planning and policy compliant?," Land Use Policy, Elsevier, vol. 69(C), pages 93-101.
    9. Jun-Hyun Kim & Donghwan Gu & Wonmin Sohn & Sung-Ho Kil & Hwanyong Kim & Dong-Kun Lee, 2016. "Neighborhood Landscape Spatial Patterns and Land Surface Temperature: An Empirical Study on Single-Family Residential Areas in Austin, Texas," IJERPH, MDPI, vol. 13(9), pages 1-15, September.
    10. Dario Ambrosini & Giorgio Galli & Biagio Mancini & Iole Nardi & Stefano Sfarra, 2014. "Evaluating Mitigation Effects of Urban Heat Islands in a Historical Small Center with the ENVI-Met ® Climate Model," Sustainability, MDPI, vol. 6(10), pages 1-17, October.
    11. Shahrestani, Mehdi & Yao, Runming & Luo, Zhiwen & Turkbeyler, Erdal & Davies, Hywel, 2015. "A field study of urban microclimates in London," Renewable Energy, Elsevier, vol. 73(C), pages 3-9.
    12. Walter Leal Filho & Leyre Echevarria Icaza & Victoria Omeche Emanche & Abul Quasem Al-Amin, 2017. "An Evidence-Based Review of Impacts, Strategies and Tools to Mitigate Urban Heat Islands," IJERPH, MDPI, vol. 14(12), pages 1-29, December.
    13. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    14. Jim, C.Y., 2015. "Cold-season solar input and ambivalent thermal behavior brought by climber greenwalls," Energy, Elsevier, vol. 90(P1), pages 926-938.
    15. Šuklje, Tomaž & Medved, Sašo & Arkar, Ciril, 2016. "On detailed thermal response modeling of vertical greenery systems as cooling measure for buildings and cities in summer conditions," Energy, Elsevier, vol. 115(P1), pages 1055-1068.
    16. Andrea Pianella & Lu Aye & Zhengdong Chen & Nicholas S. G. Williams, 2017. "Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    17. Davies, Clive & Lafortezza, Raffaele, 2018. "Corrigendum to “Urban green infrastructure in europe: Is greenspace planning and policy compliant?” [Land Use Policy 69 (December) (2017) 93–101]," Land Use Policy, Elsevier, vol. 71(C), pages 612-612.
    18. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    19. Gabriele Manoli & Simone Fatichi & Markus Schläpfer & Kailiang Yu & Thomas W. Crowther & Naika Meili & Paolo Burlando & Gabriel G. Katul & Elie Bou-Zeid, 2019. "Magnitude of urban heat islands largely explained by climate and population," Nature, Nature, vol. 573(7772), pages 55-60, September.
    20. He, Yang & Yu, Hang & Ozaki, Akihito & Dong, Nannan & Zheng, Shiling, 2017. "Influence of plant and soil layer on energy balance and thermal performance of green roof system," Energy, Elsevier, vol. 141(C), pages 1285-1299.
    21. Jim, C.Y., 2015. "Thermal performance of climber greenwalls: Effects of solar irradiance and orientation," Applied Energy, Elsevier, vol. 154(C), pages 631-643.
    22. Newman, Lenore & Herbert, Yuill, 2009. "The use of deep water cooling systems: Two Canadian examples," Renewable Energy, Elsevier, vol. 34(3), pages 727-730.
    23. Liu, Min (Max), 2014. "Probabilistic prediction of green roof energy performance under parameter uncertainty," Energy, Elsevier, vol. 77(C), pages 667-674.
    24. Cuce, Erdem, 2017. "Thermal regulation impact of green walls: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 194(C), pages 247-254.
    25. Pérez, Gabriel & Coma, Julià & Sol, Salvador & Cabeza, Luisa F., 2017. "Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect," Applied Energy, Elsevier, vol. 187(C), pages 424-437.
    26. Akbari, Hashem & Taha, Haider, 1992. "The impact of trees and white surfaces on residential heating and cooling energy use in four Canadian cities," Energy, Elsevier, vol. 17(2), pages 141-149.
    27. Lontorfos, V. & Efthymiou, C. & Santamouris, M., 2018. "On the time varying mitigation performance of reflective geoengineering technologies in cities," Renewable Energy, Elsevier, vol. 115(C), pages 926-930.
    28. Brenda B. Lin & Jacqui Meyers & R. Matthew Beaty & Guy B. Barnett, 2016. "Urban Green Infrastructure Impacts on Climate Regulation Services in Sydney, Australia," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
    29. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    30. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    31. Ehsan Sharifi & Alpana Sivam & John Boland, 2016. "Resilience to heat in public space: a case study of Adelaide, South Australia," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(10), pages 1833-1854, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyi Qiu & Sung-Ho Kil & Hyun-Kil Jo & Chan Park & Wonkyong Song & Yun Eui Choi, 2023. "Cooling Effect of Urban Blue and Green Spaces: A Case Study of Changsha, China," IJERPH, MDPI, vol. 20(3), pages 1-14, February.
    2. Szymon Czyża & Anna Maria Kowalczyk, 2024. "Applying GIS in Blue-Green Infrastructure Design in Urban Areas for Better Life Quality and Climate Resilience," Sustainability, MDPI, vol. 16(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Patryk Antoszewski & Michał Krzyżaniak & Dariusz Świerk, 2022. "The Future of Climate-Resilient and Climate-Neutral City in the Temperate Climate Zone," IJERPH, MDPI, vol. 19(7), pages 1-60, April.
    3. Peng, Lilliana L.H. & Jiang, Zhidian & Yang, Xiaoshan & Wang, Qingqing & He, Yunfei & Chen, Sophia Shuang, 2020. "Energy savings of block-scale facade greening for different urban forms," Applied Energy, Elsevier, vol. 279(C).
    4. Liu Tian & Yongcai Li & Jun Lu & Jue Wang, 2021. "Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    5. Ileana Blanco & Fabiana Convertino, 2023. "Thermal Performance of Green Façades: Research Trends Analysis Using a Science Mapping Approach," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    6. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    8. He, Yang & Yu, Hang & Ozaki, Akihito & Dong, Nannan & Zheng, Shiling, 2017. "Influence of plant and soil layer on energy balance and thermal performance of green roof system," Energy, Elsevier, vol. 141(C), pages 1285-1299.
    9. Bevilacqua, Piero, 2021. "The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    10. Stella Tsoka & Katerina Tsikaloudaki & Theodoros Theodosiou & Dimitrios Bikas, 2020. "Urban Warming and Cities’ Microclimates: Investigation Methods and Mitigation Strategies—A Review," Energies, MDPI, vol. 13(6), pages 1-25, March.
    11. Jing Xiao & Takaya Yuizono & Ruixuan Li, 2024. "Synergistic Landscape Design Strategies to Renew Thermal Environment: A Case Study of a Cfa-Climate Urban Community in Central Komatsu City, Japan," Sustainability, MDPI, vol. 16(13), pages 1-29, June.
    12. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    13. Daniel Mora-Melià & Carlos S. López-Aburto & Pablo Ballesteros-Pérez & Pedro Muñoz-Velasco, 2018. "Viability of Green Roofs as a Flood Mitigation Element in the Central Region of Chile," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    14. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    15. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    16. Coma, Julià & Chàfer, Marta & Pérez, Gabriel & Cabeza, Luisa F., 2020. "How internal heat loads of buildings affect the effectiveness of vertical greenery systems? An experimental study," Renewable Energy, Elsevier, vol. 151(C), pages 919-930.
    17. Cansu Iraz Seyrek Şık & Agata Woźniczka & Barbara Widera, 2022. "A Conceptual Framework for the Design of Energy-Efficient Vertical Green Façades," Energies, MDPI, vol. 15(21), pages 1-19, October.
    18. Hankun Lin & Yiqiang Xiao & Florian Musso & Yao Lu, 2019. "Green Façade Effects on Thermal Environment in Transitional Space: Field Measurement Studies and Computational Fluid Dynamics Simulations," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    19. Oquendo-Di Cosola, V. & Olivieri, F. & Ruiz-García, L., 2022. "A systematic review of the impact of green walls on urban comfort: temperature reduction and noise attenuation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Stella Tsoka & Katerina Tsikaloudaki & Theodoros Theodosiou, 2019. "Coupling a Building Energy Simulation Tool with a Microclimate Model to Assess the Impact of Cool Pavements on the Building’s Energy Performance Application in a Dense Residential Area," Sustainability, MDPI, vol. 11(9), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:19:p:7093-:d:420692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.