IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v208y2025ics1364032124007354.html
   My bibliography  Save this article

Thermal modeling of living walls: A review

Author

Listed:
  • Zavrl, Eva
  • Žižak, Tej
  • Poredoš, Primož
  • Arkar, Ciril

Abstract

Green (vegetative) building envelopes are widely recognized for their environmental benefits. They have a positive effect on the energy efficiency of buildings and improve the urban microclimate, e.g. by mitigating urban heat island effects and increasing living comfort in cities. Living walls are considered an emerging technology and thus lack widely implemented and established models of thermal response. Experimentally oriented studies of living walls currently prevail, while research on modeling is scarce. This study presents a detailed review of the modeling of heat and mass transfer, considering the individual mechanisms separately. The review demonstrates that existing models primarily adopt heat and mass transfer mechanisms from green roof models. However, the adjustments may be inadequate for dense urban environments due to the vertical layout of living walls. Most studies also assume the uniformity of properties, such as growing media moisture content throughout columns and rows of living wall modular elements, although these properties can vary and significantly affect the thermal response. It is also highlighted that the influence of an open-air gap on living wall thermal response (and modeling) might be underestimated. Identified modeling gaps serve as recommendations for further development of mathematical models. This includes expanding considered boundary conditions, adjustments of oversimplified assumptions, and emphasizing the need for further validation, that will stimulate the development of living wall technology towards a sustainable, energy efficient and reliable technology.

Suggested Citation

  • Zavrl, Eva & Žižak, Tej & Poredoš, Primož & Arkar, Ciril, 2025. "Thermal modeling of living walls: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007354
    DOI: 10.1016/j.rser.2024.115009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124007354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.