IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v162y2022ics1364032122003227.html
   My bibliography  Save this article

Is the sustainability potential of vertical greening systems deeply rooted? Establishing uniform outlines for environmental impact assessment of VGS

Author

Listed:
  • Rowe, T.
  • Poppe, J.
  • Buyle, M.
  • Belmans, B.
  • Audenaert, A.

Abstract

Building-related green infrastructures can help reduce several problems associated with urban life. However, while green roofs are reasonably well established and researched, questions remain about the environmental sustainability of vertical greening systems. This article reviews the use of life cycle assessment (LCA) to answer these questions. Methodological choices made in current LCA studies for modeling vertical greening systems are assessed. It is shown that a wide variety in boundary conditions used and assumptions made is prevalent. Based on the lessons learned a framework outline is proposed as a first step towards a more standardized assessment methodology. This outline is built around the life cycle phases and the boundary conditions of vertical greening systems, complemented by case specific data requirements and delivered benefits. The reviewed studies are compared with the framework to identify gaps and opportunities for improvement of current practices. It can be concluded that, to correctly represent the environmental impact of vertical greening systems, the associated benefits need to be better accounted for. For some benefits, i.e., energy savings due to reduced heating/cooling demand, CO2 sequestration, and air pollution reduction, it should be possible to implement them into LCA studies in the short to medium term because basic models and data are available for integration in the state-of-the-art. For other benefits, such as impacts on biodiversity, noise reduction, and psychological and health effects, quantitative data are still lacking, and additional research should be carried out to enable their integration.

Suggested Citation

  • Rowe, T. & Poppe, J. & Buyle, M. & Belmans, B. & Audenaert, A., 2022. "Is the sustainability potential of vertical greening systems deeply rooted? Establishing uniform outlines for environmental impact assessment of VGS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003227
    DOI: 10.1016/j.rser.2022.112414
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122003227
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van den Berg, Agnes E. & Maas, Jolanda & Verheij, Robert A. & Groenewegen, Peter P., 2010. "Green space as a buffer between stressful life events and health," Social Science & Medicine, Elsevier, vol. 70(8), pages 1203-1210, April.
    2. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Sam C. M. Hui & T. C. Ma, 2017. "Analysis of environmental performance of indoor living walls using embodied energy and carbon," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(2), pages 67-74.
    4. Marchi, Michela & Pulselli, Riccardo Maria & Marchettini, Nadia & Pulselli, Federico Maria & Bastianoni, Simone, 2015. "Carbon dioxide sequestration model of a vertical greenery system," Ecological Modelling, Elsevier, vol. 306(C), pages 46-56.
    5. Katia Perini & Fabio Magrassi & Andrea Giachetta & Luca Moreschi & Michela Gallo & Adriana Del Borghi, 2021. "Environmental Sustainability of Building Retrofit through Vertical Greening Systems: A Life-Cycle Approach," Sustainability, MDPI, vol. 13(9), pages 1-13, April.
    6. Manso, Maria & Castro-Gomes, João, 2015. "Green wall systems: A review of their characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 863-871.
    7. Fabrizio Ascione & Rosa Francesca De Masi & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2020. "Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches," Energies, MDPI, vol. 13(9), pages 1-39, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter J. Irga & Fraser R. Torpy & Daniel Griffin & Sara J. Wilkinson, 2023. "Vertical Greening Systems: A Perspective on Existing Technologies and New Design Recommendation," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    2. Yue Yang & Kai Hu & Yibiao Liu & Zhihuang Wang & Kaihong Dong & Peijuan Lv & Xing Shi, 2023. "Optimisation of Building Green Performances Using Vertical Greening Systems: A Case Study in Changzhou, China," Sustainability, MDPI, vol. 15(5), pages 1-30, March.
    3. Fernando Fonseca & Marina Paschoalino & Lígia Silva, 2023. "Health and Well-Being Benefits of Outdoor and Indoor Vertical Greening Systems: A Review," Sustainability, MDPI, vol. 15(5), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jutta Hollands & Azra Korjenic, 2021. "Evaluation and Planning Decision on Façade Greening Made Easy—Integration in BIM and Implementation of an Automated Design Process," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    2. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Pei-Wen Chung & Stephen J. Livesley & John P. Rayner & Claire Farrell, 2021. "Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants," Land, MDPI, vol. 10(12), pages 1-13, November.
    4. Peter J. Irga & Fraser R. Torpy & Daniel Griffin & Sara J. Wilkinson, 2023. "Vertical Greening Systems: A Perspective on Existing Technologies and New Design Recommendation," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    5. Fabrizio Ascione & Rosa Francesca De Masi & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2020. "Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches," Energies, MDPI, vol. 13(9), pages 1-39, May.
    6. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Leopold Škerget & António Tadeu & João Almeida, 2021. "Unsteady Coupled Moisture and Heat Energy Transport through an Exterior Wall Covered with Vegetation," Energies, MDPI, vol. 14(15), pages 1-26, July.
    9. Kay Fretwell & Alison Greig, 2019. "Towards a Better Understanding of the Relationship between Individual’s Self-Reported Connection to Nature, Personal Well-Being and Environmental Awareness," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    10. Bertram, Christine & Rehdanz, Katrin, 2015. "The role of urban green space for human well-being," Ecological Economics, Elsevier, vol. 120(C), pages 139-152.
    11. Somajita Paul & Harini Nagendra, 2017. "Factors Influencing Perceptions and Use of Urban Nature: Surveys of Park Visitors in Delhi," Land, MDPI, vol. 6(2), pages 1-23, April.
    12. Adriana Del Borghi & Thomas Spiegelhalter & Luca Moreschi & Michela Gallo, 2021. "Carbon-Neutral-Campus Building: Design Versus Retrofitting of Two University Zero Energy Buildings in Europe and in the United States," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    13. Siqi Lai & Brian Deal, 2022. "Parks, Green Space, and Happiness: A Spatially Specific Sentiment Analysis Using Microblogs in Shanghai, China," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    14. Marcin K. Widomski & Anna Musz-Pomorska & Justyna Gołębiowska, 2023. "Hydrologic Effectiveness and Economic Efficiency of Green Architecture in Selected Urbanized Catchment," Land, MDPI, vol. 12(7), pages 1-19, June.
    15. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Silvia Vela & Chiara Calderini & Paolo Rosasco & Carlo Strazza, 2022. "Economic and Environmental Evaluation of a Single-Story Steel Building in Its Life Cycle: A Comprehensive Analysis," Sustainability, MDPI, vol. 14(21), pages 1-22, November.
    17. Hessels, Jolanda & Rietveld, Cornelius A. & van der Zwan, Peter, 2017. "Self-employment and work-related stress: The mediating role of job control and job demand," Journal of Business Venturing, Elsevier, vol. 32(2), pages 178-196.
    18. Yue Yang & Kai Hu & Yibiao Liu & Zhihuang Wang & Kaihong Dong & Peijuan Lv & Xing Shi, 2023. "Optimisation of Building Green Performances Using Vertical Greening Systems: A Case Study in Changzhou, China," Sustainability, MDPI, vol. 15(5), pages 1-30, March.
    19. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    20. Antonios Kolimenakis & Alexandra D. Solomou & Nikolaos Proutsos & Evangelia V. Avramidou & Evangelia Korakaki & Georgios Karetsos & Georgios Maroulis & Eleftherios Papagiannis & Konstantinia Tsagkari, 2021. "The Socioeconomic Welfare of Urban Green Areas and Parks; A Literature Review of Available Evidence," Sustainability, MDPI, vol. 13(14), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.