IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4422-d599245.html
   My bibliography  Save this article

Unsteady Coupled Moisture and Heat Energy Transport through an Exterior Wall Covered with Vegetation

Author

Listed:
  • Leopold Škerget

    (Itecons—Institute for Research and Technological Development in Construction, Energy, Environment and Sustainability, Rua Pedro Hispano s/ n., 3030-289 Coimbra, Portugal)

  • António Tadeu

    (Itecons—Institute for Research and Technological Development in Construction, Energy, Environment and Sustainability, Rua Pedro Hispano s/ n., 3030-289 Coimbra, Portugal
    ADAI—LAETA, Department of Civil Engineering, University of Coimbra, Pólo II, Rua Luís Reis Santos, 3030-788 Coimbra, Portugal)

  • João Almeida

    (Itecons—Institute for Research and Technological Development in Construction, Energy, Environment and Sustainability, Rua Pedro Hispano s/ n., 3030-289 Coimbra, Portugal
    Chemistry Centre, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal)

Abstract

A mathematical model that governs unsteady coupled moisture and heat energy transport through an exterior wall covered with vegetation is described. The unknown temperature and moisture content of the plants and canopy air are represented by a system of nonlinear ordinary differential equations (ODEs). The transport of moisture and heat through the support structure, which includes insulation and soil layers, is defined in a series of nonlinear partial differential equations (PDEs). After setting out the model, this article presents and discusses a set of numerical applications. First, a simplified system consisting of a brick wall covered with climbing vegetation is used to study the role of individual variables (e.g., wind speed, minimum stomatal internal leaf resistance, leaf area index, and short-wave extinction coefficient) on the hygrothermal behaviour of the green wall. Thereafter, more complex green wall systems comprising a bare concrete wall, mortar, cork-based insulation (ICB), soil and vegetation are used to evaluate the influence of the thermal insulation and substrate layers on the heat flux distribution over time at the interior surface of the wall, and on the evolution of the relative humidity, water content, and temperature throughout the cross section of the green wall. The numerical experiments proved that vegetation can effectively reduce exterior facade surface temperatures, heat flux through the building envelope and daily temperature fluctuations.

Suggested Citation

  • Leopold Škerget & António Tadeu & João Almeida, 2021. "Unsteady Coupled Moisture and Heat Energy Transport through an Exterior Wall Covered with Vegetation," Energies, MDPI, vol. 14(15), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4422-:d:599245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4422/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4422/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reza Broun & Hamed Babaizadeh & Abolfazl Zakersalehi & Gillian F. Menzies, 2014. "Integrated Life Cycle Energy and Greenhouse Gas Analysis of Exterior Wall Systems for Residential Buildings," Sustainability, MDPI, vol. 6(12), pages 1-12, November.
    2. Manso, Maria & Castro-Gomes, João, 2015. "Green wall systems: A review of their characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 863-871.
    3. Šuklje, Tomaž & Medved, Sašo & Arkar, Ciril, 2016. "On detailed thermal response modeling of vertical greenery systems as cooling measure for buildings and cities in summer conditions," Energy, Elsevier, vol. 115(P1), pages 1055-1068.
    4. Jesús Feijó-Muñoz & Irene Poza-Casado & Roberto Alonso González-Lezcano & Cristina Pardal & Víctor Echarri & Rafael Assiego De Larriva & Jesica Fernández-Agüera & María Jesús Dios-Viéitez & Víctor Jos, 2018. "Methodology for the Study of the Envelope Airtightness of Residential Buildings in Spain: A Case Study," Energies, MDPI, vol. 11(4), pages 1-20, March.
    5. Marchi, Michela & Pulselli, Riccardo Maria & Marchettini, Nadia & Pulselli, Federico Maria & Bastianoni, Simone, 2015. "Carbon dioxide sequestration model of a vertical greenery system," Ecological Modelling, Elsevier, vol. 306(C), pages 46-56.
    6. Lee, Louis S.H. & Jim, C.Y., 2019. "Energy benefits of green-wall shading based on novel-accurate apportionment of short-wave radiation components," Applied Energy, Elsevier, vol. 238(C), pages 1506-1518.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susca, T. & Zanghirella, F. & Colasuonno, L. & Del Fatto, V., 2022. "Effect of green wall installation on urban heat island and building energy use: A climate-informed systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    4. Rowe, T. & Poppe, J. & Buyle, M. & Belmans, B. & Audenaert, A., 2022. "Is the sustainability potential of vertical greening systems deeply rooted? Establishing uniform outlines for environmental impact assessment of VGS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Peng, Lilliana L.H. & Jiang, Zhidian & Yang, Xiaoshan & Wang, Qingqing & He, Yunfei & Chen, Sophia Shuang, 2020. "Energy savings of block-scale facade greening for different urban forms," Applied Energy, Elsevier, vol. 279(C).
    6. Fabrizio Ascione & Rosa Francesca De Masi & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2020. "Green Walls, a Critical Review: Knowledge Gaps, Design Parameters, Thermal Performances and Multi-Criteria Design Approaches," Energies, MDPI, vol. 13(9), pages 1-39, May.
    7. Yiming Shao & Jiaqiang Li & Zhiwei Zhou & Fan Zhang & Yuanlong Cui, 2021. "The Impact of Indoor Living Wall System on Air Quality: A Comparative Monitoring Test in Building Corridors," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    8. Hankun Lin & Yiqiang Xiao & Florian Musso & Yao Lu, 2019. "Green Façade Effects on Thermal Environment in Transitional Space: Field Measurement Studies and Computational Fluid Dynamics Simulations," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    9. Jutta Hollands & Azra Korjenic, 2021. "Evaluation and Planning Decision on Façade Greening Made Easy—Integration in BIM and Implementation of an Automated Design Process," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    10. Valdas Paukštys & Gintaris Cinelis & Jūratė Mockienė & Mindaugas Daukšys, 2021. "Airtightness and Heat Energy Loss of Mid-Size Terraced Houses Built of Different Construction Materials," Energies, MDPI, vol. 14(19), pages 1-23, October.
    11. Pei-Wen Chung & Stephen J. Livesley & John P. Rayner & Claire Farrell, 2021. "Rooting Volume Impacts Growth, Coverage and Thermal Tolerance of Green Façade Climbing Plants," Land, MDPI, vol. 10(12), pages 1-13, November.
    12. Yasser Jezzini & Ghiwa Assaf & Rayan H. Assaad, 2023. "Models and Methods for Quantifying the Environmental, Economic, and Social Benefits and Challenges of Green Infrastructure: A Critical Review," Sustainability, MDPI, vol. 15(9), pages 1-40, May.
    13. Julian Canto-Perello & Maria P. Martinez-Garcia & Jorge Curiel-Esparza & Manuel Martin-Utrillas, 2015. "Implementing Sustainability Criteria for Selecting a Roof Assembly Typology in Medium Span Buildings," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    14. Katia Perini & Fabio Magrassi & Andrea Giachetta & Luca Moreschi & Michela Gallo & Adriana Del Borghi, 2021. "Environmental Sustainability of Building Retrofit through Vertical Greening Systems: A Life-Cycle Approach," Sustainability, MDPI, vol. 13(9), pages 1-13, April.
    15. Michał Dziadkiewicz & Renata Włodarczyk & Katarzyna Sukiennik, 2022. "Innovative Ecological Transformations in the Management of Municipal Real Estate," Sustainability, MDPI, vol. 14(21), pages 1-14, November.
    16. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Roberto-Alonso Gonzalez-Lezcano & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Application and Validation of a Dynamic Energy Simulation Tool: A Case Study with Water Flow Glazing Envelope," Energies, MDPI, vol. 13(12), pages 1-20, June.
    17. Pérez, Gabriel & Coma, Julià & Sol, Salvador & Cabeza, Luisa F., 2017. "Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect," Applied Energy, Elsevier, vol. 187(C), pages 424-437.
    18. Noemi Caltabellotta & Felicia Cavaleri & Carlo Greco & Kestutis Navickas & Carlo Scibetta & Laura Giammanco, 2019. "Integration of green roofs&walls in urban areas," RIVISTA DI STUDI SULLA SOSTENIBILITA', FrancoAngeli Editore, vol. 0(2 Suppl.), pages 61-78.
    19. Manso, Maria & Teotónio, Inês & Silva, Cristina Matos & Cruz, Carlos Oliveira, 2021. "Green roof and green wall benefits and costs: A review of the quantitative evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Maria-Mar Fernandez-Antolin & José-Manuel del-Río & Fernando del Ama Gonzalo & Roberto-Alonso Gonzalez-Lezcano, 2020. "The Relationship between the Use of Building Performance Simulation Tools by Recent Graduate Architects and the Deficiencies in Architectural Education," Energies, MDPI, vol. 13(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4422-:d:599245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.