IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5159-d801511.html
   My bibliography  Save this article

Cool Pavements: State of the Art and New Technologies

Author

Listed:
  • Sophia Kappou

    (Department of Environmental Engineering, University of Patras, 30100 Agrinio, Greece)

  • Manolis Souliotis

    (Department of Chemical Engineering, University of Western Macedonia, 50100 Kozani, Greece)

  • Spiros Papaefthimiou

    (School of Production Engineering & Management, Technical University of Crete, 73100 Chania, Greece)

  • Giorgos Panaras

    (Department of Mechanical Engineering, University of Western Macedonia, 50100 Kozani, Greece)

  • John A. Paravantis

    (Department of International and European Studies, University of Piraeus, 18534 Piraeus, Greece)

  • Evanthie Michalena

    (Sustainability Research Centre, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia)

  • Jeremy Maxwell Hills

    (Sustainability Research Centre, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
    Institute of Marine Resources, Faculty of Science, Technology and Environment, The University of the South Pacific, Suva, Fiji)

  • Andreas P. Vouros

    (Department of Mechanical Engineering & Aeronautics, University of Patras, 26504 Patras, Greece)

  • Aikaterini Ntymenou

    (Department of Environmental Engineering, University of Patras, 30100 Agrinio, Greece)

  • Giouli Mihalakakou

    (Department of Mechanical Engineering & Aeronautics, University of Patras, 26504 Patras, Greece)

Abstract

With growing urban populations, methods of reducing the urban heat island effect have become increasingly important. Cool pavements altering the heat storage of materials used in pavements can lead to lower surface temperatures and reduce the thermal radiation emitted to the atmosphere. Cool pavement technologies utilize various strategies to reduce the temperature of new and existing pavements, including increased albedo, evaporative cooling, and reduced heat conduction. This process of negative radiation forces helps offset the impacts of increasing atmospheric temperatures. This paper presents an extensive analysis of the state of the art of cool pavements. The properties and principles of cool pavements are reviewed, including reflectivity, thermal emittance, heat transfer, thermal capacity, and permeability. The different types, research directions, and applications of reflective pavements are outlined and discussed. Maintenance and restoration technologies of cool pavements are reviewed, including permeable pavements. Results show that cool pavements have significant temperature reduction potential in the urban environment. This research is important for policy actions of the European Union, noting that European and international business stakeholders have recently expressed their interest in new ways of reducing energy consumption through technologically advanced pavements.

Suggested Citation

  • Sophia Kappou & Manolis Souliotis & Spiros Papaefthimiou & Giorgos Panaras & John A. Paravantis & Evanthie Michalena & Jeremy Maxwell Hills & Andreas P. Vouros & Aikaterini Ntymenou & Giouli Mihalakak, 2022. "Cool Pavements: State of the Art and New Technologies," Sustainability, MDPI, vol. 14(9), pages 1-32, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5159-:d:801511
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5159/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5159/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    2. Davies, Mike & Steadman, Philip & Oreszczyn, Tadj, 2008. "Strategies for the modification of the urban climate and the consequent impact on building energy use," Energy Policy, Elsevier, vol. 36(12), pages 4548-4551, December.
    3. John A. Paravantis & Panagiotis D. Tasios & Vasileios Dourmas & Georgios Andreakos & Konstantinos Velaoras & Nikoletta Kontoulis & Panagiota Mihalakakou, 2021. "A Regression Analysis of the Carbon Footprint of Megacities," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    4. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    5. Fung, W.Y. & Lam, K.S. & Hung, W.T. & Pang, S.W. & Lee, Y.L., 2006. "Impact of urban temperature on energy consumption of Hong Kong," Energy, Elsevier, vol. 31(14), pages 2623-2637.
    6. Hills, Jeremy M. & Μichalena, Evanthie & Chalvatzis, Konstantinos J., 2018. "Innovative technology in the Pacific: Building resilience for vulnerable communities," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 16-26.
    7. Akbari, Hashem & Taha, Haider, 1992. "The impact of trees and white surfaces on residential heating and cooling energy use in four Canadian cities," Energy, Elsevier, vol. 17(2), pages 141-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deimantė Lunkevičiūtė & Viktoras Vorobjovas & Pranciškus Vitta & Donatas Čygas, 2023. "Research of the Luminance of Asphalt Pavements in Trafficked Areas," Sustainability, MDPI, vol. 15(3), pages 1-19, February.
    2. Amit Kumar & Manjari Upreti & Arvind Chandra Pandey & Purabi Saikia & Mohammed Latif Khan, 2023. "Contribution of Landscape Transformation in the Development of Heat Islands and Sinks in Urban and Peri-Urban Regions in the Chota–Nagpur Plateau, India," Resources, MDPI, vol. 12(5), pages 1-24, May.
    3. Martina Giorio & Rossana Paparella, 2023. "Climate Mitigation Strategies: The Use of Cool Pavements," Sustainability, MDPI, vol. 15(9), pages 1-26, May.
    4. Jianfang Liang & Ruiwen Wang & Jingjun Li, 2022. "Exploring the Relationship between Chinese Urban Residents’ Perceptions of Sustainable Consumption and Their Efficiency Behavior: A Mediation and Moderation Analysis Based on the Social Practice Appro," Sustainability, MDPI, vol. 14(18), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    2. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2018. "Impact of urban microclimate on summertime building cooling demand: A parametric analysis for Antwerp, Belgium," Applied Energy, Elsevier, vol. 228(C), pages 852-872.
    3. Xu, Ling & Wang, Jiayu & Xiao, Feipeng & EI-Badawy, Sherif & Awed, Ahmed, 2021. "Potential strategies to mitigate the heat island impacts of highway pavement on megacities with considerations of energy uses," Applied Energy, Elsevier, vol. 281(C).
    4. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    5. Yang, Jiachuan & Wang, Zhi-Hua & Kaloush, Kamil E., 2015. "Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’ for mitigating urban heat island?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 830-843.
    6. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    7. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    8. Yunan Lu & Yinghong Qin & Chan Huang & Xijun Pang, 2023. "Albedo of Pervious Concrete and Its Implications for Mitigating Urban Heat Island," Sustainability, MDPI, vol. 15(10), pages 1-11, May.
    9. Stella Tsoka & Katerina Tsikaloudaki & Theodoros Theodosiou, 2019. "Coupling a Building Energy Simulation Tool with a Microclimate Model to Assess the Impact of Cool Pavements on the Building’s Energy Performance Application in a Dense Residential Area," Sustainability, MDPI, vol. 11(9), pages 1-16, April.
    10. Hideki Takebayashi, 2016. "High-Reflectance Technology on Building Façades: Installation Guidelines for Pedestrian Comfort," Sustainability, MDPI, vol. 8(8), pages 1-9, August.
    11. Anna Laura Pisello & Maria Saliari & Konstantina Vasilakopoulou & Shamila Hadad & Mattheos Santamouris, 2018. "Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
    12. Patryk Antoszewski & Dariusz Świerk & Michał Krzyżaniak, 2020. "Statistical Review of Quality Parameters of Blue-Green Infrastructure Elements Important in Mitigating the Effect of the Urban Heat Island in the Temperate Climate (C) Zone," IJERPH, MDPI, vol. 17(19), pages 1-36, September.
    13. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    14. Ning Li & Yuxiang Tian & Biao Ma & Dongxia Hu, 2022. "Experimental Investigation of Water-Retaining and Mechanical Behaviors of Unbound Granular Materials under Infiltration," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    15. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    16. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    17. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    18. Loi, Tian Sheng Allan & Loo, Soh Leng, 2016. "The impact of Singapore’s residential electricity conservation efforts and the way forward. Insights from the bounds testing approach," Energy Policy, Elsevier, vol. 98(C), pages 735-743.
    19. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    20. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5159-:d:801511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.