IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13206-d690485.html
   My bibliography  Save this article

Study of Vortex Systems as a Method to Weakening the Urban Heat Islands within the Financial District in Large Cities

Author

Listed:
  • Luis Rodriguez-Lucas

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Chen Ning

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Marcelo Fajardo-Pruna

    (School of Mechanical Engineering and Production Sciences, ESPOL Polytechnic University, Guayaquil 09-01-5863, Ecuador)

  • Yugui Yang

    (State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221008, China)

Abstract

This paper presents a new concept called the urban vortex system (UVS). The UVS couples a vortex generator (V.G.) that produces updraft by artificial vortex and a vortex stability zone (VSZ) consisting of an assembly of four buildings acting as a chimney. Through this system, a stable, upward vortex flow can be generated. The Reynolds Averaged Navier–Stokes (RANS) simulation was carried out to investigate the flow field in the UVS. The Renormalized Group (RNG) k–ε turbulent model was selected to solve the complex turbulent flow. Validation of the numerical results was achieved by making a comparison with the large-size experimental model. The results reported that a steady-state vortex could be formed when a vapor-air mixture at 2 m/s and 450 K enters the vortex generator. This vortex presented a maximum negative central pressure of −6.81 Pa and a maximum velocity of 5.47 (m/s). Finally, the similarity method found four dimensionless parameters, which allowed all the flow characteristics to be transported on a large scale. The proposed large-scale UVS application is predicted to be capable, with have a maximum power of 2 M.W., a specific work of 3 kJ/kg, buildings 200-m high, and the ability to generate winds of 6.1 m/s (20 km/h) at 200 m up to winds of 1.5 m/s (5 km/h) at 400 m. These winds would cause the rupture of the gas capsule of the heat island phenomenon. Therefore, the city would balance its temperature with that of the surrounding rural areas.

Suggested Citation

  • Luis Rodriguez-Lucas & Chen Ning & Marcelo Fajardo-Pruna & Yugui Yang, 2021. "Study of Vortex Systems as a Method to Weakening the Urban Heat Islands within the Financial District in Large Cities," Sustainability, MDPI, vol. 13(23), pages 1-29, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13206-:d:690485
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13206/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13206/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nizetic, Sandro, 2011. "Technical utilisation of convective vortices for carbon-free electricity production: A review," Energy, Elsevier, vol. 36(2), pages 1236-1242.
    2. Nizetic, S. & Ninic, N. & Klarin, B., 2008. "Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region," Energy, Elsevier, vol. 33(11), pages 1680-1690.
    3. Michaud, L. M., 1999. "Vortex process for capturing mechanical energy during upward heat-convection in the atmosphere," Applied Energy, Elsevier, vol. 62(4), pages 241-251, April.
    4. Ming, Tingzhen & de_Richter, Renaud & Liu, Wei & Caillol, Sylvain, 2014. "Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 792-834.
    5. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming, Tingzhen & de_Richter, Renaud & Liu, Wei & Caillol, Sylvain, 2014. "Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 792-834.
    2. Nizetic, Sandro, 2011. "Technical utilisation of convective vortices for carbon-free electricity production: A review," Energy, Elsevier, vol. 36(2), pages 1236-1242.
    3. Nižetić, S. & Duić, N. & Papadopulos, A.M. & Tina, G.M. & Grubišić-Čabo, F., 2015. "Energy efficiency evaluation of a hybrid energy system for building applications in a Mediterranean climate and its feasibility aspect," Energy, Elsevier, vol. 90(P1), pages 1171-1179.
    4. Abdul Munaf Mohamed Irfeey & Hing-Wah Chau & Mohamed Mahusoon Fathima Sumaiya & Cheuk Yin Wai & Nitin Muttil & Elmira Jamei, 2023. "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    5. Zhou, Xinping & Wang, Fang & Ochieng, Reccab M., 2010. "A review of solar chimney power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2315-2338, October.
    6. Gholamalizadeh, E. & Mansouri, S.H., 2013. "A comprehensive approach to design and improve a solar chimney power plant: A special case – Kerman project," Applied Energy, Elsevier, vol. 102(C), pages 975-982.
    7. Ganesh, Ibram, 2016. "Electrochemical conversion of carbon dioxide into renewable fuel chemicals – The role of nanomaterials and the commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1269-1297.
    8. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    9. Asitha De Silva & Dilanthi Amaratunga & Richard Haigh, 2022. "Green and Blue Infrastructure as Nature-Based Better Preparedness Solutions for Disaster Risk Reduction: Key Policy Aspects," Sustainability, MDPI, vol. 14(23), pages 1-26, December.
    10. Ramedani, Zeynab & Omid, Mahmoud & Keyhani, Alireza & Shamshirband, Shahaboddin & Khoshnevisan, Benyamin, 2014. "Potential of radial basis function based support vector regression for global solar radiation prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1005-1011.
    11. Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
    12. Good, Clara & Shepero, Mahmoud & Munkhammar, Joakim & Boström, Tobias, 2019. "Scenario-based modelling of the potential for solar energy charging of electric vehicles in two Scandinavian cities," Energy, Elsevier, vol. 168(C), pages 111-125.
    13. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Effects of flow area changes on the potential of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 400-406.
    14. Cao, Fei & Yang, Tian & Liu, Qingjun & Zhu, Tianyu & Li, Huashan & Zhao, Liang, 2017. "Design and simulation of a solar double-chimney power plant," Renewable Energy, Elsevier, vol. 113(C), pages 764-773.
    15. Lu, Xing & Xu, Peng & Wang, Huilong & Yang, Tao & Hou, Jin, 2016. "Cooling potential and applications prospects of passive radiative cooling in buildings: The current state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1079-1097.
    16. Sergei A. Soldatenko, 2017. "Weather and Climate Manipulation as an Optimal Control for Adaptive Dynamical Systems," Complexity, Hindawi, vol. 2017, pages 1-12, January.
    17. Ganesh, Ibram, 2015. "Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 904-932.
    18. Tafadzwanashe Mabhaudhi & Luxon Nhamo & Sylvester Mpandeli & Charles Nhemachena & Aidan Senzanje & Nafisa Sobratee & Pauline Paidamoyo Chivenge & Rob Slotow & Dhesigen Naidoo & Stanley Liphadzi & Albe, 2019. "The Water–Energy–Food Nexus as a Tool to Transform Rural Livelihoods and Well-Being in Southern Africa," IJERPH, MDPI, vol. 16(16), pages 1-20, August.
    19. Abedi, Mahyar & Tan, Xu & Klausner, James F. & Bénard, Andre, 2023. "Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems," Renewable Energy, Elsevier, vol. 202(C), pages 88-102.
    20. Huang, Xinjie & Song, Jiyun & Wang, Chenghao & Chan, Pak Wai, 2022. "Realistic representation of city street-level human thermal stress via a new urban climate-human coupling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13206-:d:690485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.