IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i8p5567-5583.html
   My bibliography  Save this article

Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system

Author

Listed:
  • Ming, Tingzhen
  • Wang, Xinjiang
  • de Richter, Renaud Kiesgen
  • Liu, Wei
  • Wu, Tianhua
  • Pan, Yuan

Abstract

The solar updraft power plant system (SUPPS) is a novel kind of solar thermal application, which uses the fluid buoyancy of the chimney effect to achieve output power. To investigate the impact of a strong ambient crosswind on the system output power through the collector inlet and chimney outlet, numerical analysis on the performances of a SUPPS identical to the prototype in Manzanares, Spain which is exposed to the external crosswind with different velocities is carried out in this paper. A geometrical model including the SUPPS and its outside ambience is built and the mathematical models to describe the fluid flow, heat transfer and output power of the whole system are further developed. The pressure, temperature and velocity distribution of the air in the ambience and SUPPS together with the output power of the SUPPS are analyzed. The numerical simulation results reveal that ambient crosswind has influence on the performance of the SUPPS in two ways. On one hand, when the ambient crosswind is comparably weak, it will deteriorate the flow field and reduce the output power of the SUPPS. On the other hand, it may even increase the mass flow rate and output power if the crosswind is strong enough.

Suggested Citation

  • Ming, Tingzhen & Wang, Xinjiang & de Richter, Renaud Kiesgen & Liu, Wei & Wu, Tianhua & Pan, Yuan, 2012. "Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5567-5583.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:5567-5583
    DOI: 10.1016/j.rser.2012.04.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112003528
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.04.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Xinping & Yang, Jiakuan & Wang, Fen & Xiao, Bo, 2009. "Economic analysis of power generation from floating solar chimney power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 736-749, May.
    2. Hamdan, Mohammad O., 2011. "Analysis of a solar chimney power plant in the Arabian Gulf region," Renewable Energy, Elsevier, vol. 36(10), pages 2593-2598.
    3. Ketlogetswe, Clever & Fiszdon, Jerzy K. & Seabe, Omphemetse O., 2008. "Solar chimney power generation project--The case for Botswana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 2005-2012, September.
    4. Dai, Y.J & Huang, H.B & Wang, R.Z, 2003. "Case study of solar chimney power plants in Northwestern regions of China," Renewable Energy, Elsevier, vol. 28(8), pages 1295-1304.
    5. Asnaghi, A. & Ladjevardi, S.M., 2012. "Solar chimney power plant performance in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3383-3390.
    6. Nizetic, S. & Klarin, B., 2010. "A simplified analytical approach for evaluation of the optimal ratio of pressure drop across the turbine in solar chimney power plants," Applied Energy, Elsevier, vol. 87(2), pages 587-591, February.
    7. Kasaeian, A.B. & Heidari, E. & Vatan, Sh. Nasiri, 2011. "Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5202-5206.
    8. Zhou, Xinping & Wang, Fang & Fan, Jian & Ochieng, Reccab M., 2010. "Performance of solar chimney power plant in Qinghai-Tibet Plateau," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2249-2255, October.
    9. Nizetic, S. & Ninic, N. & Klarin, B., 2008. "Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region," Energy, Elsevier, vol. 33(11), pages 1680-1690.
    10. Chergui, Toufik & Larbi, Salah & Bouhdjar, Amor, 2010. "Thermo-hydrodynamic aspect analysis of flows in solar chimney power plants--A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1410-1418, June.
    11. Larbi, Salah & Bouhdjar, Amor & Chergui, Toufik, 2010. "Performance analysis of a solar chimney power plant in the southwestern region of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 470-477, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming, Tingzhen & de_Richter, Renaud & Liu, Wei & Caillol, Sylvain, 2014. "Fighting global warming by climate engineering: Is the Earth radiation management and the solar radiation management any option for fighting climate change?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 792-834.
    2. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    3. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    4. RahimiLarki, Mohsen & Abardeh, Reza Hosseini & Rahimzadeh, Hassan & Sarlak, Hamid, 2021. "Performance analysis of a laboratory-scale tilted solar chimney system exposed to ambient crosswind," Renewable Energy, Elsevier, vol. 164(C), pages 1156-1170.
    5. Jafarifar, Naeimeh & Behzadi, Mohammad Matin & Yaghini, Mohammad, 2019. "The effect of strong ambient winds on the efficiency of solar updraft power towers: A numerical case study for Orkney," Renewable Energy, Elsevier, vol. 136(C), pages 937-944.
    6. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation," Applied Energy, Elsevier, vol. 204(C), pages 948-957.
    7. Xie, Mingxi & Jia, Teng & Dai, Yanjun, 2022. "Hybrid photovoltaic/solar chimney power plant combined with agriculture: The transformation of a decommissioned coal-fired power plant," Renewable Energy, Elsevier, vol. 191(C), pages 1-16.
    8. Xiong, Hanbing & Ming, Tingzhen & Wu, Yongjia & Wang, Caixia & Chen, Qiong & Li, Wei & Mu, Liwen & de Richter, Renaud & Yuan, Yanping, 2022. "Numerical analysis of solar chimney power plant integrated with CH4 photocatalytic reactors for fighting global warming under ambient crosswind," Renewable Energy, Elsevier, vol. 201(P1), pages 678-690.
    9. Chong Peng & Chu Li & Zuyu Zou & Suwan Shen & Dongqi Sun, 2015. "Improvement of Air Quality and Thermal Environment in an Old City District by Constructing Wind Passages," Sustainability, MDPI, vol. 7(9), pages 1-21, September.
    10. Al-Kayiem, Hussain H. & Aurybi, Mohammed A. & Gilani, Syed I.U. & Ismaeel, Ali A. & Mohammad, Sanan T., 2019. "Performance evaluation of hybrid solar chimney for uninterrupted power generation," Energy, Elsevier, vol. 166(C), pages 490-505.
    11. Rabehi, Rayan & Chaker, Abla & Ming, Tingzhen & Gong, Tingrui, 2018. "Numerical simulation of solar chimney power plant adopting the fan model," Renewable Energy, Elsevier, vol. 126(C), pages 1093-1101.
    12. Shen, Wenqing & Ming, Tingzhen & Ding, Yan & Wu, Yongjia & de_Richter, Renaud K., 2014. "Numerical analysis on an industrial-scaled solar updraft power plant system with ambient crosswind," Renewable Energy, Elsevier, vol. 68(C), pages 662-676.
    13. Chong Peng & Tingzhen Ming & Jianquan Cheng & Yongjia Wu & Zhong-Ren Peng, 2015. "Modeling Thermal Comfort and Optimizing Local Renewal Strategies—A Case Study of Dazhimen Neighborhood in Wuhan City," Sustainability, MDPI, vol. 7(3), pages 1-20, March.
    14. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    2. Maia, C.B. & Castro Silva, J.O. & Cabezas-Gómez, L. & Hanriot, S.M. & Ferreira, A.G., 2013. "Energy and exergy analysis of the airflow inside a solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 350-361.
    3. de_Richter, Renaud Kiesgen & Ming, Tingzhen & Caillol, Sylvain, 2013. "Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 82-106.
    4. Zhou, Xinping & Wang, Fang & Ochieng, Reccab M., 2010. "A review of solar chimney power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2315-2338, October.
    5. Ghalamchi, Mehran & Kasaeian, Alibakhsh & Ghalamchi, Mehrdad, 2015. "Experimental study of geometrical and climate effects on the performance of a small solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 425-431.
    6. Zhou, Xinping & Bernardes, Marco A. dos S. & Ochieng, Reccab M., 2012. "Influence of atmospheric cross flow on solar updraft tower inflow," Energy, Elsevier, vol. 42(1), pages 393-400.
    7. Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
    8. Cao, Fei & Yang, Tian & Liu, Qingjun & Zhu, Tianyu & Li, Huashan & Zhao, Liang, 2017. "Design and simulation of a solar double-chimney power plant," Renewable Energy, Elsevier, vol. 113(C), pages 764-773.
    9. Cao, Fei & Liu, Qingjun & Yang, Tian & Zhu, Tianyu & Bai, Jianbo & Zhao, Liang, 2018. "Full-year simulation of solar chimney power plants in Northwest China," Renewable Energy, Elsevier, vol. 119(C), pages 421-428.
    10. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    11. Attig-Bahar, F. & Guellouz, M.S. & Sahraoui, M. & Kaddeche, S., 2021. "Economic analysis of a 1 MW solar chimney power plant in Tozeur, Tunisia," Renewable Energy, Elsevier, vol. 178(C), pages 456-465.
    12. Ehsan Gholamalizadeh & Jae Dong Chung, 2017. "A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants," Energies, MDPI, vol. 10(10), pages 1-11, October.
    13. Asnaghi, A. & Ladjevardi, S.M., 2012. "Solar chimney power plant performance in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3383-3390.
    14. Emad Abdelsalam & Fares Almomani & Feras Kafiah & Eyad Almaitta & Muhammad Tawalbeh & Asma Khasawneh & Dareen Habash & Abdullah Omar & Malek Alkasrawi, 2021. "A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination," Sustainability, MDPI, vol. 13(21), pages 1-24, November.
    15. Setareh, Milad, 2021. "Comprehensive mathematical study on solar chimney powerplant," Renewable Energy, Elsevier, vol. 175(C), pages 470-485.
    16. Mehrpooya, Mehdi & Shahsavan, Mohsen & Sharifzadeh, Mohammad Mehdi Moftakhari, 2016. "Modeling, energy and exergy analysis of solar chimney power plant-Tehran climate data case study," Energy, Elsevier, vol. 115(P1), pages 257-273.
    17. RahimiLarki, Mohsen & Abardeh, Reza Hosseini & Rahimzadeh, Hassan & Sarlak, Hamid, 2021. "Performance analysis of a laboratory-scale tilted solar chimney system exposed to ambient crosswind," Renewable Energy, Elsevier, vol. 164(C), pages 1156-1170.
    18. Hurtado, F.J. & Kaiser, A.S. & Zamora, B., 2012. "Evaluation of the influence of soil thermal inertia on the performance of a solar chimney power plant," Energy, Elsevier, vol. 47(1), pages 213-224.
    19. Emad Abdelsalam & Feras Kafiah & Malek Alkasrawi & Ismael Al-Hinti & Ahmad Azzam, 2020. "Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP)," Energies, MDPI, vol. 13(11), pages 1-14, June.
    20. Emad Abdelsalam & Feras Kafiah & Fares Almomani & Muhammad Tawalbeh & Sanad Kiswani & Asma Khasawneh & Dana Ibrahim & Malek Alkasrawi, 2021. "An Innovative Design of a Solar Double-Chimney Power Plant for Electricity Generation," Energies, MDPI, vol. 14(19), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:5567-5583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.