IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2789-d365793.html
   My bibliography  Save this article

Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP)

Author

Listed:
  • Emad Abdelsalam

    (Electrical and Energy Engineering Department, Al Hussein Technical University, Amman 11831, Jordan)

  • Feras Kafiah

    (Electrical and Energy Engineering Department, Al Hussein Technical University, Amman 11831, Jordan)

  • Malek Alkasrawi

    (UWSP Paper Science & Engineering Department, University of Wisconsin, Stevens Point, WI 54481, USA)

  • Ismael Al-Hinti

    (Electrical and Energy Engineering Department, Al Hussein Technical University, Amman 11831, Jordan)

  • Ahmad Azzam

    (Electrical and Energy Engineering Department, Al Hussein Technical University, Amman 11831, Jordan)

Abstract

This work provides technical and economic feasibility of installing a solar chimney power-water distillation plant (SCPWDP) in the port of Aqaba in Jordan. A mathematical model for the SCPWDP has been developed and validated. A full year of weather conditions data has been processed, where water and electricity productions have been estimated. The results show that the SCPWDP can produce 481,440 kWh of electricity and 123,753 ton of distilled water yearly simultaneously. The economic analysis shows that the levelized cost of energy (LCOE) for the SCPWDP is $1.86/kWh. The cost estimate seems reasonable once compared with other studies. However, from economical point of view the LCOE of SCPWDP requires a further decrease in order to make it economically feasible. The sensitivity analysis shows that increasing the chimney height of the SCPWDP would increase the production of electricity, and hence, decreases the LCOE. However, increasing the chimney height would have a marginal improvement since it increases both capital and operation expenditures.

Suggested Citation

  • Emad Abdelsalam & Feras Kafiah & Malek Alkasrawi & Ismael Al-Hinti & Ahmad Azzam, 2020. "Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP)," Energies, MDPI, vol. 13(11), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2789-:d:365793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2789/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
    2. Ghalamchi, Mehrdad & Kasaeian, Alibakhsh & Ghalamchi, Mehran & Mirzahosseini, Alireza Hajiseyed, 2016. "An experimental study on the thermal performance of a solar chimney with different dimensional parameters," Renewable Energy, Elsevier, vol. 91(C), pages 477-483.
    3. Ehsan Gholamalizadeh & Jae Dong Chung, 2017. "A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants," Energies, MDPI, vol. 10(10), pages 1-11, October.
    4. Hamdan, Mohammad O., 2011. "Analysis of a solar chimney power plant in the Arabian Gulf region," Renewable Energy, Elsevier, vol. 36(10), pages 2593-2598.
    5. Asnaghi, A. & Ladjevardi, S.M., 2012. "Solar chimney power plant performance in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3383-3390.
    6. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    7. Lubomír Klimeš & Pavel Charvát & Jiří Hejčík, 2018. "Comparison of the Energy Conversion Efficiency of a Solar Chimney and a Solar PV-Powered Fan for Ventilation Applications," Energies, MDPI, vol. 11(4), pages 1-15, April.
    8. Arce, J. & Jiménez, M.J. & Guzmán, J.D. & Heras, M.R. & Alvarez, G. & Xamán, J., 2009. "Experimental study for natural ventilation on a solar chimney," Renewable Energy, Elsevier, vol. 34(12), pages 2928-2934.
    9. Alex Yong Kwang Tan & Nyuk Hien Wong, 2013. "Parameterization Studies of Solar Chimneys in the Tropics," Energies, MDPI, vol. 6(1), pages 1-19, January.
    10. Koonsrisuk, Atit & Chitsomboon, Tawit, 2013. "Mathematical modeling of solar chimney power plants," Energy, Elsevier, vol. 51(C), pages 314-322.
    11. Raghava Kommalapati & Akhil Kadiyala & Md. Tarkik Shahriar & Ziaul Huque, 2017. "Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.
    12. Islam Elsayed & Yoshiki Nishi, 2018. "A Feasibility Study on Power Generation from Solar Thermal Wind Tower: Inclusive Impact Assessment Concerning Environmental and Economic Costs," Energies, MDPI, vol. 11(11), pages 1-18, November.
    13. Zygmunt Lipnicki & Marta Gortych & Anna Staszczuk & Tadeusz Kuczyński & Piotr Grabas, 2019. "Analytical and Experimental Investigation of the Solar Chimney System," Energies, MDPI, vol. 12(11), pages 1-13, May.
    14. Zhou, Xinping & Wang, Fang & Ochieng, Reccab M., 2010. "A review of solar chimney power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2315-2338, October.
    15. Nizetic, S. & Ninic, N. & Klarin, B., 2008. "Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region," Energy, Elsevier, vol. 33(11), pages 1680-1690.
    16. Ehsan Gholamalizadeh & Man-Hoe Kim, 2016. "Multi-Objective Optimization of a Solar Chimney Power Plant with Inclined Collector Roof Using Genetic Algorithm," Energies, MDPI, vol. 9(11), pages 1-14, November.
    17. Harris, D.J. & Helwig, N., 2007. "Solar chimney and building ventilation," Applied Energy, Elsevier, vol. 84(2), pages 135-146, February.
    18. Larbi, Salah & Bouhdjar, Amor & Chergui, Toufik, 2010. "Performance analysis of a solar chimney power plant in the southwestern region of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 470-477, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelsalam, Emad & Almomani, Fares & Ashraf, Hafsa & Ibrahim, Shadwa, 2022. "Dual-technology power plant as a potential solution for the clean water and electricity productions: Eritrea case study," Renewable Energy, Elsevier, vol. 201(P1), pages 1050-1060.
    2. Emad Abdelsalam & Fares Almomani & Feras Kafiah & Eyad Almaitta & Muhammad Tawalbeh & Asma Khasawneh & Dareen Habash & Abdullah Omar & Malek Alkasrawi, 2021. "A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination," Sustainability, MDPI, vol. 13(21), pages 1-24, November.
    3. Yousef Al-Abdallat & Inshad Jumah & Rami Jumah & Hanadi Ghanem & Ahmad Telfah, 2020. "Catalytic Electrochemical Water Splitting Using Boron Doped Diamond (BDD) Electrodes as a Promising Energy Resource and Storage Solution," Energies, MDPI, vol. 13(20), pages 1-15, October.
    4. Arijit A. Ganguli & Sagar S. Deshpande & Aniruddha B. Pandit, 2021. "CFD Simulations for Performance Enhancement of a Solar Chimney Power Plant (SCPP) and Techno-Economic Feasibility for a 5 MW SCPP in an Indian Context," Energies, MDPI, vol. 14(11), pages 1-28, June.
    5. Almaita, Eyad & Abdelsalam, Emad & Almomani, Fares & Nawafah, Hamza & Kassem, Fadwa & Alshkoor, Saleh & Shloul, Maan, 2023. "Impact study of integrating solar double chimney power plant into electrical grid," Energy, Elsevier, vol. 265(C).
    6. Emad Abdelsalam & Feras Kafiah & Fares Almomani & Muhammad Tawalbeh & Sanad Kiswani & Asma Khasawneh & Dana Ibrahim & Malek Alkasrawi, 2021. "An Innovative Design of a Solar Double-Chimney Power Plant for Electricity Generation," Energies, MDPI, vol. 14(19), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emad Abdelsalam & Feras Kafiah & Fares Almomani & Muhammad Tawalbeh & Sanad Kiswani & Asma Khasawneh & Dana Ibrahim & Malek Alkasrawi, 2021. "An Innovative Design of a Solar Double-Chimney Power Plant for Electricity Generation," Energies, MDPI, vol. 14(19), pages 1-21, September.
    2. Kasaeian, A.B. & Molana, Sh. & Rahmani, K. & Wen, D., 2017. "A review on solar chimney systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 954-987.
    3. Emad Abdelsalam & Fares Almomani & Feras Kafiah & Eyad Almaitta & Muhammad Tawalbeh & Asma Khasawneh & Dareen Habash & Abdullah Omar & Malek Alkasrawi, 2021. "A New Sustainable and Novel Hybrid Solar Chimney Power Plant Design for Power Generation and Seawater Desalination," Sustainability, MDPI, vol. 13(21), pages 1-24, November.
    4. Maia, C.B. & Castro Silva, J.O. & Cabezas-Gómez, L. & Hanriot, S.M. & Ferreira, A.G., 2013. "Energy and exergy analysis of the airflow inside a solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 350-361.
    5. Attig-Bahar, F. & Guellouz, M.S. & Sahraoui, M. & Kaddeche, S., 2021. "Economic analysis of a 1 MW solar chimney power plant in Tozeur, Tunisia," Renewable Energy, Elsevier, vol. 178(C), pages 456-465.
    6. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    7. Cao, Fei & Liu, Qingjun & Yang, Tian & Zhu, Tianyu & Bai, Jianbo & Zhao, Liang, 2018. "Full-year simulation of solar chimney power plants in Northwest China," Renewable Energy, Elsevier, vol. 119(C), pages 421-428.
    8. Cao, Fei & Yang, Tian & Liu, Qingjun & Zhu, Tianyu & Li, Huashan & Zhao, Liang, 2017. "Design and simulation of a solar double-chimney power plant," Renewable Energy, Elsevier, vol. 113(C), pages 764-773.
    9. Ming, Tingzhen & Wang, Xinjiang & de Richter, Renaud Kiesgen & Liu, Wei & Wu, Tianhua & Pan, Yuan, 2012. "Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5567-5583.
    10. de_Richter, Renaud Kiesgen & Ming, Tingzhen & Caillol, Sylvain, 2013. "Fighting global warming by photocatalytic reduction of CO2 using giant photocatalytic reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 82-106.
    11. Ming, Tingzhen & Wu, Yongjia & de_Richter, Renaud K. & Liu, Wei & Sherif, S.A., 2017. "Solar updraft power plant system: A brief review and a case study on a new system with radial partition walls in its collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 472-487.
    12. Okoye, Chiemeka Onyeka & Taylan, Onur, 2017. "Performance analysis of a solar chimney power plant for rural areas in Nigeria," Renewable Energy, Elsevier, vol. 104(C), pages 96-108.
    13. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    14. Zhou, Xinping & Bernardes, Marco A. dos S. & Ochieng, Reccab M., 2012. "Influence of atmospheric cross flow on solar updraft tower inflow," Energy, Elsevier, vol. 42(1), pages 393-400.
    15. Al-Kayiem, Hussain H. & Aja, Ogboo Chikere, 2016. "Historic and recent progress in solar chimney power plant enhancing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1269-1292.
    16. Ehsan Gholamalizadeh & Jae Dong Chung, 2017. "A Comparative Study of CFD Models of a Real Wind Turbine in Solar Chimney Power Plants," Energies, MDPI, vol. 10(10), pages 1-11, October.
    17. Ghalamchi, Mehran & Kasaeian, Alibakhsh & Ghalamchi, Mehrdad, 2015. "Experimental study of geometrical and climate effects on the performance of a small solar chimney," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 425-431.
    18. Emad Abdelsalam & Fares Almomani & Shadwa Ibrahim & Feras Kafiah & Mohammad Jamjoum & Malek Alkasrawi, 2023. "A Novel Design of a Hybrid Solar Double-Chimney Power Plant for Generating Electricity and Distilled Water," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    19. Tawalbeh, Muhammad & Mohammed, Shima & Alnaqbi, Aaesha & Alshehhi, Shouq & Al-Othman, Amani, 2023. "Analysis for hybrid photovoltaic/solar chimney seawater desalination plant: A CFD simulation in Sharjah, United Arab Emirates," Renewable Energy, Elsevier, vol. 202(C), pages 667-685.
    20. Asnaghi, A. & Ladjevardi, S.M., 2012. "Solar chimney power plant performance in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3383-3390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2789-:d:365793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.