IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i1p145-163d22626.html
   My bibliography  Save this article

Parameterization Studies of Solar Chimneys in the Tropics

Author

Listed:
  • Alex Yong Kwang Tan

    (Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore)

  • Nyuk Hien Wong

    (Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore)

Abstract

The paper examines the effect of the solar chimney’s stack height, depth, width and inlet position on the interior performance (air temperature and speed at 1.20 m height above the ground) as well as proposes an optimal tropical solar chimney design. Simulations show that the output air temperature remains constant while the solar chimney’s width is the most significant factor influencing output air speed. The solar chimney’s inlet position has limited influence on the output air speed although regions near the solar chimney’s inlet show an increase in air speed. Furthermore, a regression model is developed based on the solar chimney’s stack height, depth and width to predict the interior air speed. To optimize solar chimney in the tropics, the recommendation is to first maximize its width as the interior’s width, while allowing its stack height to be the building’s height. Lastly, the solar chimney’s depth is determined from the regression model by allocating the required interior air speed.

Suggested Citation

  • Alex Yong Kwang Tan & Nyuk Hien Wong, 2013. "Parameterization Studies of Solar Chimneys in the Tropics," Energies, MDPI, vol. 6(1), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:1:p:145-163:d:22626
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/1/145/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/1/145/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2006. "The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate," Renewable Energy, Elsevier, vol. 31(7), pages 987-1010.
    2. Awbi, H.B., 1994. "Design considerations for naturally ventilated buildings," Renewable Energy, Elsevier, vol. 5(5), pages 1081-1090.
    3. Hirunlabh, J & Kongduang, W & Namprakai, P & Khedari, J, 1999. "Study of natural ventilation of houses by a metallic solar wall under tropical climate," Renewable Energy, Elsevier, vol. 18(1), pages 109-119.
    4. Amer, Emad H., 2006. "Passive options for solar cooling of buildings in arid areas," Energy, Elsevier, vol. 31(8), pages 1332-1344.
    5. Aboulnaga, Mohsen M., 1998. "A roof solar chimney assisted by cooling cavity for natural ventilation in buildings in hot arid climates: An energy conservation approach in Al-Ain city," Renewable Energy, Elsevier, vol. 14(1), pages 357-363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siphiwe Mdlalose & Sipho Sibanda & Tilahun Workneh & Mark Laing, 2022. "Innovative Low-Cost Naturally Ventilated Maize Seed Storage System," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 8(1), pages 39-49, 01-2022.
    2. Ahmad Taghdisi & Yousof Ghanbari & Mohammad Eskandari, 2020. "Energy-Conservation Considerations Through a Novel Integration of Sunspace and Solar Chimney in The Terraced Rural Dwellings," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 1-13.
    3. Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
    4. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    5. Tao, Yao & Zhang, Haihua & Zhang, Lili & Zhang, Guomin & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double-skin façade in buildings," Renewable Energy, Elsevier, vol. 167(C), pages 184-198.
    6. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Emad Abdelsalam & Feras Kafiah & Malek Alkasrawi & Ismael Al-Hinti & Ahmad Azzam, 2020. "Economic Study of Solar Chimney Power-Water Distillation Plant (SCPWDP)," Energies, MDPI, vol. 13(11), pages 1-14, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zavala-Guillén, I. & Xamán, J. & Hernández-Pérez, I. & Hernández-Lopéz, I. & Gijón-Rivera, M. & Chávez, Y., 2018. "Numerical study of the optimum width of 2a diurnal double air-channel solar chimney," Energy, Elsevier, vol. 147(C), pages 403-417.
    2. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    3. Sengupta, Ayan & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2022. "Computational performance analysis of a solar chimney using surface modifications of the absorber plate," Renewable Energy, Elsevier, vol. 185(C), pages 1095-1109.
    4. Chan, Hoy-Yen & Riffat, Saffa B. & Zhu, Jie, 2010. "Review of passive solar heating and cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 781-789, February.
    5. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    6. Huang, Sheng & Li, Wuyan & Lu, Jun & Li, Yongcai & Wang, Zhihao & Zhu, Shaohui, 2024. "Experimental study on thermal performances of a solar chimney with and without PCM under different system inclination angles," Energy, Elsevier, vol. 290(C).
    7. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    8. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Cheng, Xudong & Shi, Zhicheng & Nguyen, Kate & Zhang, Lihai & Zhou, Yong & Zhang, Guomin & Wang, Jinhui & Shi, Long, 2020. "Solar chimney in tunnel considering energy-saving and fire safety," Energy, Elsevier, vol. 210(C).
    10. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2006. "The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate," Renewable Energy, Elsevier, vol. 31(7), pages 987-1010.
    11. Chi, Fang'ai & Xu, Liming & Peng, Changhai, 2020. "Integration of completely passive cooling and heating systems with daylighting function into courtyard building towards energy saving," Applied Energy, Elsevier, vol. 266(C).
    12. Li, Yongcai & Long, Tianhe & Bai, Xi & Wang, Linfeng & Li, Wuyan & Liu, Shuli & Lu, Jun & Cheng, Yong & Ye, Kai & Huang, Sheng, 2021. "An experimental investigation on the passive ventilation and cooling performance of an integrated solar chimney and earth–air heat exchanger," Renewable Energy, Elsevier, vol. 175(C), pages 486-500.
    13. De Gracia, Alvaro & Castell, Albert & Navarro, Lidia & Oró, Eduard & Cabeza, Luisa F., 2013. "Numerical modelling of ventilated facades: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 539-549.
    14. Lindita Bande & Rahma Adan & Kim Young & Raghad Ghazal & Mukesh Jha & Amna Aldarmaki & Atmah Aldhaheri & Asma Alneyadi & Sharina Aldhaheri & Mira Khalifa, 2021. "Outdoor Thermal Comfort Study on a District Level as Part of the Housing Programs in Abu Dhabi and Al Ain, United Arab Emirates," Land, MDPI, vol. 10(3), pages 1-23, March.
    15. AboulNaga, M.M & Abdrabboh, S.N, 2000. "Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall–roof solar chimney," Renewable Energy, Elsevier, vol. 19(1), pages 47-54.
    16. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    17. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    18. Zamora, B. & Kaiser, A.S., 2010. "Numerical study on mixed buoyancy-wind driving induced flow in a solar chimney for building ventilation," Renewable Energy, Elsevier, vol. 35(9), pages 2080-2088.
    19. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    20. Liu, Shuli & Li, Yongcai, 2015. "An experimental study on the thermal performance of a solar chimney without and with PCM," Renewable Energy, Elsevier, vol. 81(C), pages 338-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:1:p:145-163:d:22626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.