IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i3p264-d511304.html
   My bibliography  Save this article

Outdoor Thermal Comfort Study on a District Level as Part of the Housing Programs in Abu Dhabi and Al Ain, United Arab Emirates

Author

Listed:
  • Lindita Bande

    (Architectural Engineering Department, United Arab Emirates University, Al Ain 15258, United Arab Emirates)

  • Rahma Adan

    (Architectural Engineering Department, United Arab Emirates University, Al Ain 15258, United Arab Emirates)

  • Kim Young

    (Architectural Engineering Department, United Arab Emirates University, Al Ain 15258, United Arab Emirates)

  • Raghad Ghazal

    (Architectural Engineering Department, United Arab Emirates University, Al Ain 15258, United Arab Emirates)

  • Mukesh Jha

    (Architectural Engineering Department, United Arab Emirates University, Al Ain 15258, United Arab Emirates)

  • Amna Aldarmaki

    (Architectural Engineering Department, United Arab Emirates University, Al Ain 15258, United Arab Emirates)

  • Atmah Aldhaheri

    (Architectural Engineering Department, United Arab Emirates University, Al Ain 15258, United Arab Emirates)

  • Asma Alneyadi

    (Architectural Engineering Department, United Arab Emirates University, Al Ain 15258, United Arab Emirates)

  • Sharina Aldhaheri

    (Architectural Engineering Department, United Arab Emirates University, Al Ain 15258, United Arab Emirates)

  • Mira Khalifa

    (Architectural Engineering Department, United Arab Emirates University, Al Ain 15258, United Arab Emirates)

Abstract

The United Arab Emirates (UAE) has witnessed fast growth in urban development in the past four decades. A plan to build 7270 houses by 2021 has been initiated by the local authorities. Different local sustainability guidelines are being implemented, including the Public Realm Manual in Abu Dhabi. These local guidelines are tailored to consider the hot and arid climate of the UAE as well as the applied materials, the inclusion of greenery, shading devices, etc. Dubai, Abu Dhabi, and Al Ain are cities that have imposed the application of such guidelines. Additionally, the newly developed housing programs match the governmental plan. To understand the effect of these design programs on the outdoor thermal comfort (OTC), further investigations are necessary for each city. The most widely built prototype is detached villas, which result in untreated waste areas without shading or greenery. In the old local neighborhoods, Arabic houses were built next to each other to maximize the shading and to ease pedestrians’ walkability. This study aims to examine the districts where the housing programs are applied and to determine the most effective strategy to minimize the outdoor air temperatures and enhance walkability. The methodology implements the following processes in order: district analyses of the buildings as well as the externally applied materials, microclimate site measurements, ENVI-met (main software used) models of the current and future scenarios, results and recommendations. The strategies have different impacts in both cites due to the microclimate and other conditions.

Suggested Citation

  • Lindita Bande & Rahma Adan & Kim Young & Raghad Ghazal & Mukesh Jha & Amna Aldarmaki & Atmah Aldhaheri & Asma Alneyadi & Sharina Aldhaheri & Mira Khalifa, 2021. "Outdoor Thermal Comfort Study on a District Level as Part of the Housing Programs in Abu Dhabi and Al Ain, United Arab Emirates," Land, MDPI, vol. 10(3), pages 1-23, March.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:3:p:264-:d:511304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/3/264/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/3/264/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ibrahim Rizk Hegazy & Emad Mohammed Qurnfulah, 0. "Thermal comfort of urban spaces using simulation tools exploring street orientation influence of on the outdoor thermal comfort: a case study of Jeddah, Saudi Arabia," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 15(4), pages 594-606.
    2. Aboulnaga, Mohsen M., 1998. "A roof solar chimney assisted by cooling cavity for natural ventilation in buildings in hot arid climates: An energy conservation approach in Al-Ain city," Renewable Energy, Elsevier, vol. 14(1), pages 357-363.
    3. Sandeep K. Agrawal & Varkki Pallathucheril & Pradeep Sangapala, 2020. "Affordable Housing for Emiratis in the United Arab Emirates: The Case Study of Ras Al Khaimah," Housing Policy Debate, Taylor & Francis Journals, vol. 30(6), pages 900-925, November.
    4. Reiche, Danyel, 2010. "Renewable Energy Policies in the Gulf countries: A case study of the carbon-neutral "Masdar City" in Abu Dhabi," Energy Policy, Elsevier, vol. 38(1), pages 378-382, January.
    5. Khondaker, A.N. & Hasan, Md. Arif & Rahman, Syed Masiur & Malik, Karim & Shafiullah, Md & Muhyedeen, Musah A, 2016. "Greenhouse gas emissions from energy sector in the United Arab Emirates – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1317-1325.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilhardo Barros Moreira de Carvalho & Luiz Bueno da Silva, 2024. "The microclimate implications of urban form applying computer simulation: systematic literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(10), pages 24687-24726, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessio Russo & Giuseppe T. Cirella, 2019. "Edible urbanism 5.0," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-9, December.
    2. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    3. Ishmael Ackah, 2016. "Policy interventions in renewable energy for sustainable development: is Ghana on the right path to achieve SDG 7?," Working Papers of the African Governance and Development Institute. 16/013, African Governance and Development Institute..
    4. Ajlan, Abdullah & Tan, Chee Wei & Abdilahi, Abdirahman Mohamed, 2017. "Assessment of environmental and economic perspectives for renewable-based hybrid power system in Yemen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 559-570.
    5. Abbas Hassan & Hyowon Lee, 2015. "The paradox of the sustainable city: definitions and examples," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(6), pages 1267-1285, December.
    6. DeBlois, Justin C. & Bilec, Melissa M. & Schaefer, Laura A., 2013. "Design and zonal building energy modeling of a roof integrated solar chimney," Renewable Energy, Elsevier, vol. 52(C), pages 241-250.
    7. Diab, Fahd & Lan, Hai & Ali, Salwa, 2016. "Novel comparison study between the hybrid renewable energy systems on land and on ship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 452-463.
    8. Radhi, Hassan, 2012. "Trade-off between environmental and economic implications of PV systems integrated into the UAE residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2468-2474.
    9. Almansoori, Ali & Betancourt-Torcat, Alberto, 2015. "Design optimization model for the integration of renewable and nuclear energy in the United Arab Emirates’ power system," Applied Energy, Elsevier, vol. 148(C), pages 234-251.
    10. Uniyal, Sachin & Lodhi, Mahendra Singh & Pawar, Yogita & Thakral, Shreyasee & Garg, Purushottam Kumar & Mukherjee, Sandipan & Nautiyal, Sunil, 2024. "Passive solar heated buildings for enhancing sustainability in the Indian Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    11. Scholtens, Bert & Veldhuis, Rineke, 2015. "How does the development of the financial industry advance renewable energy? A panel regression study of 198 countries over three decades," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113114, Verein für Socialpolitik / German Economic Association.
    12. Ruble, Isabella & Nader, Pamela, 2011. "Transforming shortcomings into opportunities: Can market incentives solve Lebanon's energy crisis?," Energy Policy, Elsevier, vol. 39(5), pages 2467-2474, May.
    13. Ayoub, Nasser & Yuji, Naka, 2012. "Governmental intervention approaches to promote renewable energies—Special emphasis on Japanese feed-in tariff," Energy Policy, Elsevier, vol. 43(C), pages 191-201.
    14. Hiba Najini & Mutasim Nour & Sulaiman Al-Zuhair & Fadi Ghaith, 2020. "Techno-Economic Analysis of Green Building Codes in United Arab Emirates Based on a Case Study Office Building," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
    15. Cheng, Xudong & Shi, Zhicheng & Nguyen, Kate & Zhang, Lihai & Zhou, Yong & Zhang, Guomin & Wang, Jinhui & Shi, Long, 2020. "Solar chimney in tunnel considering energy-saving and fire safety," Energy, Elsevier, vol. 210(C).
    16. Muhammad Muhitur Rahman & Md Arif Hasan & Md Shafiullah & Mohammad Shahedur Rahman & Md Arifuzzaman & Md. Kamrul Islam & Mohammed Monirul Islam & Syed Masiur Rahman, 2022. "A Critical, Temporal Analysis of Saudi Arabia’s Initiatives for Greenhouse Gas Emissions Reduction in the Energy Sector," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    17. Strielkowski, Wadim & Štreimikienė, Dalia & Bilan, Yuriy, 2017. "Network charging and residential tariffs: A case of household photovoltaics in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 461-473.
    18. Premalatha, M. & Tauseef, S.M. & Abbasi, Tasneem & Abbasi, S.A., 2013. "The promise and the performance of the world's first two zero carbon eco-cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 660-669.
    19. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2006. "The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate," Renewable Energy, Elsevier, vol. 31(7), pages 987-1010.
    20. Izadi Maliheh & Varesi Hamidreza & Vardanjani Mehdi Jafari, 2021. "An analysis of key factors affecting New Town Planning with a human-centred approach," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 53(53), pages 131-145, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:3:p:264-:d:511304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.