IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i21p8773-d432915.html
   My bibliography  Save this article

Techno-Economic Analysis of Green Building Codes in United Arab Emirates Based on a Case Study Office Building

Author

Listed:
  • Hiba Najini

    (School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK)

  • Mutasim Nour

    (School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK)

  • Sulaiman Al-Zuhair

    (Chemical Engineering Department, UAE University, Al-Ain 15551, UAE)

  • Fadi Ghaith

    (School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK)

Abstract

Green building regulations in the United Arab Emirates are required to obtain building permits so that future construction projects can create a sustainable living environment. Emirates such as Abu Dhabi, Dubai, and Sharjah have specific green building regulations, whereas other emirates follow Abu Dhabi’s regulatory criteria. Previous work fails to present a techno-economic cross-code analysis for various green building regulations in the UAE by evaluating energy and water performance. A case study using an existing high-rise green office building was formulated using the Integrated Environmental Solution: Virtual Environment (IES-VE) platform and the U.S. Leadership in Energy and Environmental Design (U.S. LEED) water consumption evaluation tool to study its energy and water performance, respectively. The archived results were used to devise an economic study based on the discounted cash flow technique. The principal findings of this research allowed us to determine a cross-code analysis and propose cost-effective trade-offs. These will aid the consultants and contractors in choosing appropriate green building regulations in the UAE by highlighting the potential of each parameter within green building regulations in terms of energy, water, and economic performance.

Suggested Citation

  • Hiba Najini & Mutasim Nour & Sulaiman Al-Zuhair & Fadi Ghaith, 2020. "Techno-Economic Analysis of Green Building Codes in United Arab Emirates Based on a Case Study Office Building," Sustainability, MDPI, vol. 12(21), pages 1-22, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8773-:d:432915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/21/8773/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/21/8773/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lindita Bande & Adalberto Guerra Cabrera & Young Ki Kim & Afshin Afshari & Mario Favalli Ragusini & Melanie Gines Cooke, 2019. "A Building Retrofit and Sensitivity Analysis in an Automatically Calibrated Model Considering the Urban Heat Island Effect in Abu Dhabi, UAE," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    2. Ayman Ragab & Ahmed Abdelrady, 2020. "Impact of Green Roofs on Energy Demand for Cooling in Egyptian Buildings," Sustainability, MDPI, vol. 12(14), pages 1-13, July.
    3. AboulNaga, M.M & Abdrabboh, S.N, 2000. "Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall–roof solar chimney," Renewable Energy, Elsevier, vol. 19(1), pages 47-54.
    4. Thomas Auer & Philipp Vohlidka & Christine Zettelmeier, 2020. "The Right Amount of Technology in School Buildings," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    5. Assaf, Sameer & Nour, Mutasim, 2015. "Potential of energy and water efficiency improvement in Abu Dhabi's building sector – Analysis of Estidama pearl rating system," Renewable Energy, Elsevier, vol. 82(C), pages 100-107.
    6. Mingli Li & Guoqing Gui & Zhibin Lin & Long Jiang & Hong Pan & Xingyu Wang, 2018. "Numerical Thermal Characterization and Performance Metrics of Building Envelopes Containing Phase Change Materials for Energy-Efficient Buildings," Sustainability, MDPI, vol. 10(8), pages 1-23, July.
    7. Zeyad Amin Al-Absi & Mohd Hafizal Mohd Isa & Mazran Ismail, 2020. "Phase Change Materials (PCMs) and Their Optimum Position in Building Walls," Sustainability, MDPI, vol. 12(4), pages 1-25, February.
    8. Zhaoxia Wang & Jing Zhao, 2018. "Optimization of Passive Envelop Energy Efficient Measures for Office Buildings in Different Climate Regions of China Based on Modified Sensitivity Analysis," Sustainability, MDPI, vol. 10(4), pages 1-28, March.
    9. Ivan Julio Apolonio Callejas & Luciane Cleonice Durante & Eduardo Diz-Mellado & Carmen Galán-Marín, 2020. "Thermal Sensation in Courtyards: Potentialities as a Passive Strategy in Tropical Climates," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    10. Chia-Ho Wu & Chih-Hong Huang & Yeou-Fong Li & Wei-Hao Lee & Ta-Wui Cheng, 2020. "Utilization of Basic Oxygen Furnace Slag in Geopolymeric Coating for Passive Radiative Cooling Application," Sustainability, MDPI, vol. 12(10), pages 1-15, May.
    11. Aboulnaga, Mohsen M., 1998. "A roof solar chimney assisted by cooling cavity for natural ventilation in buildings in hot arid climates: An energy conservation approach in Al-Ain city," Renewable Energy, Elsevier, vol. 14(1), pages 357-363.
    12. Friess, Wilhelm A. & Rakhshan, Kambiz, 2017. "A review of passive envelope measures for improved building energy efficiency in the UAE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 485-496.
    13. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.
    14. Joud Al Dakheel & Kheira Tabet Aoul & Ahmed Hassan, 2018. "Enhancing Green Building Rating of a School under the Hot Climate of UAE; Renewable Energy Application and System Integration," Energies, MDPI, vol. 11(9), pages 1-14, September.
    15. Taleb, Hanan M. & Sharples, Steve, 2011. "Developing sustainable residential buildings in Saudi Arabia: A case study," Applied Energy, Elsevier, vol. 88(1), pages 383-391, January.
    16. Yunlong Ma & Suvash C. Saha & Wendy Miller & Lisa Guan, 2017. "Parametric Analysis of Design Parameter Effects on the Performance of a Solar Desiccant Evaporative Cooling System in Brisbane, Australia," Energies, MDPI, vol. 10(7), pages 1-22, June.
    17. Al-Masri, Nada & Abu-Hijleh, Bassam, 2012. "Courtyard housing in midrise buildings: An environmental assessment in hot-arid climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1892-1898.
    18. Akbari, H. & Konopacki, S., 2005. "Calculating energy-saving potentials of heat-island reduction strategies," Energy Policy, Elsevier, vol. 33(6), pages 721-756, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsu, Ching-Chi & Ngo, Quang-Thanh & Chien, FengSheng & Li, Li & Mohsin, Muhammad, 2021. "Evaluating green innovation and performance of financial development: mediating concerns of environmental regulation," MPRA Paper 109671, University Library of Munich, Germany.
    2. Odey Alshboul & Ali Shehadeh & Ghassan Almasabha & Ali Saeed Almuflih, 2022. "Extreme Gradient Boosting-Based Machine Learning Approach for Green Building Cost Prediction," Sustainability, MDPI, vol. 14(11), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friess, Wilhelm A. & Rakhshan, Kambiz, 2017. "A review of passive envelope measures for improved building energy efficiency in the UAE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 485-496.
    2. Ahmed, Wahhaj & Asif, Muhammad, 2021. "A critical review of energy retrofitting trends in residential buildings with particular focus on the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Casini, Marco, 2020. "A positive energy building for the Middle East climate: ReStart4Smart Solar House at Solar Decathlon Middle East 2018," Renewable Energy, Elsevier, vol. 159(C), pages 1269-1296.
    4. Sengupta, Ayan & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2022. "Computational performance analysis of a solar chimney using surface modifications of the absorber plate," Renewable Energy, Elsevier, vol. 185(C), pages 1095-1109.
    5. Elaouzy, Y. & El Fadar, A., 2022. "Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Delorit, Justin D. & Schuldt, Steven J. & Chini, Christopher M., 2020. "Evaluating an adaptive management strategy for organizational energy use under climate uncertainty," Energy Policy, Elsevier, vol. 142(C).
    7. Shi, Long & Zhang, Guomin & Yang, Wei & Huang, Dongmei & Cheng, Xudong & Setunge, Sujeeva, 2018. "Determining the influencing factors on the performance of solar chimney in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 223-238.
    8. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Mohamed H. Elnabawi, 2021. "Evaluating the Impact of Energy Efficiency Building Codes for Residential Buildings in the GCC," Energies, MDPI, vol. 14(23), pages 1-22, December.
    10. Ayyagari Ramani & Borja García de Soto, 2021. "Estidama and the Pearl Rating System: A Comprehensive Review and Alignment with LCA," Sustainability, MDPI, vol. 13(9), pages 1-31, April.
    11. Miyazaki, T. & Akisawa, A. & Kashiwagi, T., 2006. "The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate," Renewable Energy, Elsevier, vol. 31(7), pages 987-1010.
    12. Al-Alili, A. & Islam, M.D. & Kubo, I. & Hwang, Y. & Radermacher, R., 2012. "Modeling of a solar powered absorption cycle for Abu Dhabi," Applied Energy, Elsevier, vol. 93(C), pages 160-167.
    13. Hana Charvátová & Aleš Procházka & Martin Zálešák, 2020. "Computer Simulation of Passive Cooling of Wooden House Covered by Phase Change Material," Energies, MDPI, vol. 13(22), pages 1-15, November.
    14. Eduardo Diz-Mellado & Samuele Rubino & Soledad Fernández-García & Macarena Gómez-Mármol & Carlos Rivera-Gómez & Carmen Galán-Marín, 2021. "Applied Machine Learning Algorithms for Courtyards Thermal Patterns Accurate Prediction," Mathematics, MDPI, vol. 9(10), pages 1-19, May.
    15. Abdul Mujeebu, Muhammad & Bano, Farheen, 2022. "Integration of passive energy conservation measures in a detached residential building design in warm humid climate," Energy, Elsevier, vol. 255(C).
    16. Radwan A. Almasri & Abdullah A. Alardhi & Saad Dilshad, 2021. "Investigating the Impact of Integration the Saudi Code of Energy Conservation with the Solar PV Systems in Residential Buildings," Sustainability, MDPI, vol. 13(6), pages 1-30, March.
    17. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    18. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    19. Karel Struhala & Miroslav Čekon & Richard Slávik, 2018. "Life Cycle Assessment of Solar Façade Concepts Based on Transparent Insulation Materials," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    20. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:21:p:8773-:d:432915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.