IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Modeling of a solar powered absorption cycle for Abu Dhabi

  • Al-Alili, A.
  • Islam, M.D.
  • Kubo, I.
  • Hwang, Y.
  • Radermacher, R.
Registered author(s):

    In this study, the feasibility of a solar powered absorption cycle under Abu Dhabi’s weather conditions is assessed. Utilizing solar energy is very attractive since the cooling requirements are in phase with the solar energy availability. Using solar driven air conditioners would also reduce the dependence on fossil fuel based energy. The proposed system uses evacuated tube collectors to drive a 10kWc ammonia–water absorption chiller. Transient systems simulation of the complete system is carried out in order to select and size different system components. Based on the thermal analysis, the solar air conditioner system has a specific collector area of 6m2/kWc and a specific tank volume of 0.1m3/kWc. The selected system size requires about 47% less electrical energy than the widely spread vapor-compression cycles of the same cooling capacity. In addition, economical analysis is performed for three electricity costs. The collector area is found to be the key parameters in reducing the payback period of the initial investment. Moreover, the proposed system is found to reduce 12metric tons/year of CO2 emissions due to its energy savings.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261910004976
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 93 (2012)
    Issue (Month): C ()
    Pages: 160-167

    as
    in new window

    Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:160-167
    Contact details of provider: Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

    Order Information: Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
    Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:160-167. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.