IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Modeling of a solar powered absorption cycle for Abu Dhabi

Listed author(s):
  • Al-Alili, A.
  • Islam, M.D.
  • Kubo, I.
  • Hwang, Y.
  • Radermacher, R.
Registered author(s):

    In this study, the feasibility of a solar powered absorption cycle under Abu Dhabi’s weather conditions is assessed. Utilizing solar energy is very attractive since the cooling requirements are in phase with the solar energy availability. Using solar driven air conditioners would also reduce the dependence on fossil fuel based energy. The proposed system uses evacuated tube collectors to drive a 10kWc ammonia–water absorption chiller. Transient systems simulation of the complete system is carried out in order to select and size different system components. Based on the thermal analysis, the solar air conditioner system has a specific collector area of 6m2/kWc and a specific tank volume of 0.1m3/kWc. The selected system size requires about 47% less electrical energy than the widely spread vapor-compression cycles of the same cooling capacity. In addition, economical analysis is performed for three electricity costs. The collector area is found to be the key parameters in reducing the payback period of the initial investment. Moreover, the proposed system is found to reduce 12metric tons/year of CO2 emissions due to its energy savings.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Applied Energy.

    Volume (Year): 93 (2012)
    Issue (Month): C ()
    Pages: 160-167

    in new window

    Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:160-167
    DOI: 10.1016/j.apenergy.2010.11.034
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Al-Homoud, A.A. & Suri, R.K. & Al-Roumi, Raed & Maheshwari, G.P., 1996. "Experiences with solar cooling systems in Kuwait," Renewable Energy, Elsevier, vol. 9(1), pages 664-669.
    2. Al-Iriani, Mahmoud A., 2005. "Climate-related electricity demand-side management in oil-exporting countries--the case of the United Arab Emirates," Energy Policy, Elsevier, vol. 33(18), pages 2350-2360, December.
    3. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2009. "Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment," Applied Energy, Elsevier, vol. 86(9), pages 1712-1722, September.
    4. Sharaf, A.M & AboulNaga, M.M & El Diasty, R, 2000. "Building-integrated solar photovoltaic systems—a hybrid solar cooled ventilation technique for hot climate applications," Renewable Energy, Elsevier, vol. 19(1), pages 91-96.
    5. El-Nashar, Ali M. & Samad, M., 1998. "The solar desalination plant in Abu Dhabi: 13 years of performance and operation history," Renewable Energy, Elsevier, vol. 14(1), pages 263-274.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:160-167. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.