IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6229-d1439692.html
   My bibliography  Save this article

Energy and Environmental Analyses of a Solar–Gas Turbine Combined Cycle with Inlet Air Cooling

Author

Listed:
  • Ahmad M. Abubaker

    (Institute of Research for Technology Development (IR4TD), University of Kentucky, Lexington, KY 40506, USA)

  • Adnan Darwish Ahmad

    (Institute of Research for Technology Development (IR4TD), University of Kentucky, Lexington, KY 40506, USA)

  • Binit B. Singh

    (Department of Mechanical Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55414, USA)

  • Yaman M. Manaserh

    (Department of Mechanical Engineering, ES2 Center, Binghamton University-SUNY, Binghamton, NY 13902, USA)

  • Loiy Al-Ghussain

    (Energy Systems and Infrastructure Analysis Division, Argonne National Laboratory, Lemont, IL 60439, USA)

  • Nelson K. Akafuah

    (Institute of Research for Technology Development (IR4TD), University of Kentucky, Lexington, KY 40506, USA)

  • Kozo Saito

    (Institute of Research for Technology Development (IR4TD), University of Kentucky, Lexington, KY 40506, USA)

Abstract

Sensitivity to ambient air temperatures, consuming a large amount of fuel, and wasting a significant amount of heat dumped into the ambient atmosphere are three major challenges facing gas turbine power plants. This study was conducted to simultaneously solve all three aforementioned GT problems using solar energy and introducing a new configuration that consists of solar preheating and inlet-air-cooling systems. In this study, air was preheated at a combustion chamber inlet using parabolic trough collectors. Then, inlet air to the compressor was cooled by these collectors by operating an absorption cooling cycle. At the design point conditions, this novel proposed integration resulted in a 6.87% relative increase in generated power and a 10.53% relative decrement in fuel consumption, achieving a 19.45% relative increment in the plant’s thermal efficiency. This was accompanied by a reduction of 0.026 kg/s, 4.2 kg/s, and 0.278 kg/s in CO 2 , CO, and NOx emissions, respectively. Finally, spider diagrams were employed to assess the impact of the operating parameters on the overall system’s performance and its associated environmental implications.

Suggested Citation

  • Ahmad M. Abubaker & Adnan Darwish Ahmad & Binit B. Singh & Yaman M. Manaserh & Loiy Al-Ghussain & Nelson K. Akafuah & Kozo Saito, 2024. "Energy and Environmental Analyses of a Solar–Gas Turbine Combined Cycle with Inlet Air Cooling," Sustainability, MDPI, vol. 16(14), pages 1-31, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6229-:d:1439692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abubaker, Ahmad M. & Darwish Ahmad, Adnan & Salaimeh, Ahmad A. & Akafuah, Nelson K. & Saito, Kozo, 2022. "A novel solar combined cycle integration: An exergy-based optimization using artificial neural network," Renewable Energy, Elsevier, vol. 181(C), pages 914-932.
    2. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2009. "Design of environmentally conscious absorption cooling systems via multi-objective optimization and life cycle assessment," Applied Energy, Elsevier, vol. 86(9), pages 1712-1722, September.
    3. Najjar, Yousef S.H. & Al-Absi, Suhayb, 2013. "Thermoeconomic optimization for green multi-shaft gas turbine engines," Energy, Elsevier, vol. 56(C), pages 39-45.
    4. Jiang, Yuemao & Ma, Yue & Han, Fenghui & Ji, Yulong & Cai, Wenjian & Wang, Zhe, 2023. "Assessment and optimization of a novel waste heat stepped utilization system integrating partial heating sCO2 cycle and ejector refrigeration cycle using zeotropic mixtures for gas turbine," Energy, Elsevier, vol. 265(C).
    5. Mehrpanahi, A. & Nikbakht Naserabad, S. & Ahmadi, G., 2019. "Multi-objective linear regression based optimization of full repowering a single pressure steam power plant," Energy, Elsevier, vol. 179(C), pages 1017-1035.
    6. Yao, Xing & Yi, Bowen & Yu, Yang & Fan, Ying & Zhu, Lei, 2020. "Economic analysis of grid integration of variable solar and wind power with conventional power system," Applied Energy, Elsevier, vol. 264(C).
    7. Dimitriadis, Christos N. & Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2023. "Optimal bidding strategy of a gas-fired power plant in interdependent low-carbon electricity and natural gas markets," Energy, Elsevier, vol. 277(C).
    8. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    9. Dabwan, Yousef N. & Zhang, Liang & Pei, Gang, 2023. "A novel inlet air cooling system to improve the performance of intercooled gas turbine combined cycle power plants in hot regions," Energy, Elsevier, vol. 283(C).
    10. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A., 2017. "Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia," Applied Energy, Elsevier, vol. 185(P2), pages 1268-1280.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abubaker, Ahmad M. & Darwish Ahmad, Adnan & Salaimeh, Ahmad A. & Akafuah, Nelson K. & Saito, Kozo, 2022. "A novel solar combined cycle integration: An exergy-based optimization using artificial neural network," Renewable Energy, Elsevier, vol. 181(C), pages 914-932.
    2. Dereje S. Ayou & Valerie Eveloy, 2020. "Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System," Energies, MDPI, vol. 13(18), pages 1-31, September.
    3. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    4. Dabwan, Yousef N. & Pei, Gang & Gao, Guangtao & Li, Jing & Feng, Junsheng, 2019. "Performance analysis of integrated linear fresnel reflector with a conventional cooling, heat, and power tri-generation plant," Renewable Energy, Elsevier, vol. 138(C), pages 639-650.
    5. Abdullah, Mohammad Omar & Hieng, Tang Chung, 2010. "Comparative analysis of performance and techno-economics for a H2O-NH3-H2 absorption refrigerator driven by different energy sources," Applied Energy, Elsevier, vol. 87(5), pages 1535-1545, May.
    6. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    7. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    8. Deng, Xu & Lv, Tao & Meng, Xiangyun & Li, Cong & Hou, Xiaoran & Xu, Jie & Wang, Yinhao & Liu, Feng, 2024. "Assessing the carbon emission reduction effect of flexibility option for integrating variable renewable energy," Energy Economics, Elsevier, vol. 132(C).
    9. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    10. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    11. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.
    12. Guori Huang & Zheng Chen & Nan Shang & Xiaoyue Hu & Chen Wang & Huan Wen & Zhiliang Liu, 2024. "Do Tradable Green Certificates Promote Regional Carbon Emissions Reduction for Sustainable Development? Evidence from China," Sustainability, MDPI, vol. 16(17), pages 1-20, August.
    13. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    14. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    15. Cao, Menglong & Wang, Zhe & Tang, Haobo & Li, Songran & Ji, Yulong & Han, Fenghui, 2024. "Heat flow topology-driven thermo-mass decoupling strategy: Cross-scale regularization modeling and optimization analysis," Applied Energy, Elsevier, vol. 367(C).
    16. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    17. Anthony O. Onokwai & Udochukwu B. Akuru & Dawood A. Desai, 2025. "Mathematical Modelling and Optimisation of Operating Parameters for Enhanced Energy Generation in Gas Turbine Power Plant with Intercooler," Mathematics, MDPI, vol. 13(1), pages 1-39, January.
    18. Chen, Xin & Zhang, Lin & Huang, JiangBo & Jin, Lei & Song, YongShi & Zheng, XianHua & Zou, ZhiXiong, 2025. "A thermodynamics-consistent machine learning approach for ammonia-water thermal cycles," Energy, Elsevier, vol. 315(C).
    19. Sampson Agyapong Atuahene & Qian Xu Sheng, 2025. "Modeling the electricity generation dynamics of Ghana: a structural vector autoregression regression approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(2), pages 3927-3946, February.
    20. Wang, Benke & Li, Chunhua & Ban, Yongshuang & Zhao, Zeming & Wang, Zengxu, 2024. "A two-tier bidding model considering a multi-stage offer‑carbon joint incentive clearing mechanism for coupled electricity and carbon markets," Applied Energy, Elsevier, vol. 368(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6229-:d:1439692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.