IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024696.html
   My bibliography  Save this article

A novel inlet air cooling system to improve the performance of intercooled gas turbine combined cycle power plants in hot regions

Author

Listed:
  • Dabwan, Yousef N.
  • Zhang, Liang
  • Pei, Gang

Abstract

In hot climates, the entry of high-temperature air into the compressor of intercooled gas turbine power plants (IcGTCC) can lead to reduced electricity production during peak demand periods. To address this issue, this study proposes a novel inlet air cooling (IAC) system for improving the performance of IcGTCC in hot regions. This system utilizes waste heat from the intercooler to cool the compressor's inlet air via absorption chillers. The performance of this system was evaluated and compared to four popular IAC technologies: evaporative cooling, solar-powered absorption cooling, steam-operated absorption cooling, and vapor compression cooling. Additionally, the expected annual profit and payback period were estimated. Results show that the proposed IAC system resolves the drawbacks of IcGTCC in hot regions, increasing the power output by 19% and the overall efficiency by 2.3%. It is estimated that the proposed IAC system can improve plant efficiency by 8–18% compared to literature designs, leading to higher annual profits (66% and 10% higher than steam and mechanical cooling systems, respectively). Moreover, it has a short payback period of 1.74 years, which is 3%, 67%, and 85% shorter than mechanical, steam, and solar cooling systems, respectively, making it a highly cost-effective solution.

Suggested Citation

  • Dabwan, Yousef N. & Zhang, Liang & Pei, Gang, 2023. "A novel inlet air cooling system to improve the performance of intercooled gas turbine combined cycle power plants in hot regions," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024696
    DOI: 10.1016/j.energy.2023.129075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.