IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v213y2020ics0360544220319502.html
   My bibliography  Save this article

Investigation of cold storage performance to improve management of power generation in thermal power plants in Iran

Author

Listed:
  • Beigi, Behnam Feizollah
  • Mehdipour, Ramin

Abstract

During the hot seasons, the balance between power generation and consumption is disrupted due to the higher demand for cooling load and the lower power plant efficiency occurred due to the enhanced temperature of the inlet air to the turbine. The costly cold storage method in consumption centers (residential or official) is usually suggested to overcome the power generation problem in hot seasons. In this paper, the application of the cold storage system in the inlet of the gas turbine is proposed and the performance of the power generation system with cold storage is evaluated. The improvement of power generation with cold storage system compared to other cooling methods such as fog and electrical chiller, is discussed to determine which cooling method works best in reducing the network peak problem. Different methods of cold storage (partial/full) are also compared. The results for the proposed cooling system with cold storage used in hot seasons showed that, the 16-h cold storage method with the air condenser performed better during peak time compared to the other cooling methods. In June, July and August, this method improved the net generated power by 11.07%, 19.06% and 18.40%, respectively, compared with the normal condition of power plant without any cooling solution. the results of comparing the different storage strategies showed that the net output power in the full storage strategy was 2.14% higher than the partial storage strategy. Using a water condenser instead of an air condenser results in a slight increase of 0.96% in the net power output of the turbine.

Suggested Citation

  • Beigi, Behnam Feizollah & Mehdipour, Ramin, 2020. "Investigation of cold storage performance to improve management of power generation in thermal power plants in Iran," Energy, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220319502
    DOI: 10.1016/j.energy.2020.118843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220319502
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Athari, Hassan & Soltani, Saeed & Bölükbaşi, Abdurrahim & Rosen, Marc A. & Morosuk, Tatiana, 2015. "Comparative exergoeconomic analyses of the integration of biomass gasification and a gas turbine power plant with and without fogging inlet cooling," Renewable Energy, Elsevier, vol. 76(C), pages 394-400.
    2. Sanaye, Sepehr & Fardad, Abbasali & Mostakhdemi, Masoud, 2011. "Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling," Energy, Elsevier, vol. 36(2), pages 1057-1067.
    3. Renzi, M. & Caresana, F. & Pelagalli, L. & Comodi, G., 2014. "Enhancing micro gas turbine performance through fogging technique: Experimental analysis," Applied Energy, Elsevier, vol. 135(C), pages 165-173.
    4. Najjar, Yousef S.H. & Abubaker, Ahmad M. & El-Khalil, Ahmad F.S., 2015. "Novel inlet air cooling with gas turbine engines using cascaded waste-heat recovery for green sustainable energy," Energy, Elsevier, vol. 93(P1), pages 770-785.
    5. Shirazi, Ali & Najafi, Behzad & Aminyavari, Mehdi & Rinaldi, Fabio & Taylor, Robert A., 2014. "Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling," Energy, Elsevier, vol. 69(C), pages 212-226.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Jing, Heran & Wang, Lincheng & Liu, Xin, 2022. "Numerical research on the solidification heat transfer characteristics of ice thermal storage device based on a compact multichannel flat tube-closed rectangular fin heat exchanger," Energy, Elsevier, vol. 239(PD).
    2. Obida Zeitoun, 2021. "Two-Stage Evaporative Inlet Air Gas Turbine Cooling," Energies, MDPI, vol. 14(5), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahdi Deymi-Dashtebayaz & Parisa Kazemiani-Najafabad, 2019. "Energy, Exergy, Economic, and Environmental analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery," Energy & Environment, , vol. 30(3), pages 481-498, May.
    2. Singh, Omendra Kumar, 2016. "Performance enhancement of combined cycle power plant using inlet air cooling by exhaust heat operated ammonia-water absorption refrigeration system," Applied Energy, Elsevier, vol. 180(C), pages 867-879.
    3. Barakat, S. & Ramzy, Ahmed & Hamed, A.M. & El-Emam, S.H., 2019. "Augmentation of gas turbine performance using integrated EAHE and Fogging Inlet Air Cooling System," Energy, Elsevier, vol. 189(C).
    4. Barakat, Elsayed & Jin, Tai & Wang, Gaofeng, 2023. "Performance analysis of selective exhaust gas recirculation integrated with fogging cooling system for gas turbine power plants," Energy, Elsevier, vol. 263(PC).
    5. Du, Yan & Gai, Wen-mei & Jin, Long-zhe & Sheng, Wang, 2017. "Thermal comfort model analysis and optimization performance evaluation of a multifunctional ice storage air conditioning system in a confined mine refuge chamber," Energy, Elsevier, vol. 141(C), pages 964-974.
    6. Shi, X.J. & Zhang, P., 2016. "Conjugated heat and mass transfer during flow melting of a phase change material slurry in pipes," Energy, Elsevier, vol. 99(C), pages 58-68.
    7. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Fallah, M. & Siyahi, H. & Ghiasi, R. Akbarpour & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2016. "Comparison of different gas turbine cycles and advanced exergy analysis of the most effective," Energy, Elsevier, vol. 116(P1), pages 701-715.
    9. Zhang, Haitian & Feng, Xiao & Wang, Yufei, 2018. "Comparison and evaluation of air cooling and water cooling in resource consumption and economic performance," Energy, Elsevier, vol. 154(C), pages 157-167.
    10. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    11. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    12. Mohapatra, Alok Ku & Sanjay,, 2014. "Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance," Energy, Elsevier, vol. 68(C), pages 191-203.
    13. Shirazi, Ali & Taylor, Robert A. & White, Stephen D. & Morrison, Graham L., 2016. "Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: An energetic, economic and environmental (3E) assessment," Renewable Energy, Elsevier, vol. 86(C), pages 955-971.
    14. Najjar, Yousef S.H. & Abubaker, Ahmad M. & El-Khalil, Ahmad F.S., 2015. "Novel inlet air cooling with gas turbine engines using cascaded waste-heat recovery for green sustainable energy," Energy, Elsevier, vol. 93(P1), pages 770-785.
    15. Karatas, Mumtaz & Sulukan, Egemen & Karacan, Ilknur, 2018. "Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology," Energy, Elsevier, vol. 153(C), pages 890-912.
    16. Taimoor, Aqeel Ahmad & Muhammad, Ayyaz & Saleem, Waqas & Zain-ul-abdein, Muhammad, 2016. "Humidified exhaust recirculation for efficient combined cycle gas turbines," Energy, Elsevier, vol. 106(C), pages 356-366.
    17. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    18. Zhang, Yuanzhe & Liu, Pei & Li, Zheng, 2023. "Gas turbine off-design behavior modelling and operation windows analysis under different ambient conditions," Energy, Elsevier, vol. 262(PA).
    19. Esmaeil Jadidi & Mohammad Hasan Khoshgoftar Manesh & Mostafa Delpisheh & Viviani Caroline Onishi, 2021. "Advanced Exergy, Exergoeconomic, and Exergoenvironmental Analyses of Integrated Solar-Assisted Gasification Cycle for Producing Power and Steam from Heavy Refinery Fuels," Energies, MDPI, vol. 14(24), pages 1-29, December.
    20. Haghighat Mamaghani, Alireza & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2015. "4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 82(C), pages 650-663.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220319502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.