IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp964-974.html
   My bibliography  Save this article

Thermal comfort model analysis and optimization performance evaluation of a multifunctional ice storage air conditioning system in a confined mine refuge chamber

Author

Listed:
  • Du, Yan
  • Gai, Wen-mei
  • Jin, Long-zhe
  • Sheng, Wang

Abstract

A multifunctional ice storage air conditioning system was designed and its working principle, working mode and structure modification were improved. It can achieve cooling, dehumidification when the energy supply is either exhausted or adequate. The PMV grade method has been modified and applied, and thermal comfort model is obtained and the acceptable upper limit of human body temperature and humidity tolerance range is 35 °C and 80% RH. Thermal load and humidity load model were defined, analyzed, and verified by human survival experiments. Finally the optimization performance of this ice storage air conditioning system was validated through theoretical calculation and experimental verification and technical parameters appropriate for engineering applications were analyzed. The temperature and humidity in refuge chamber are eventually controlled at 31°Cand 77% RH. According to the experiment subjects, the living environment in refuge chamber is quite comfortable and thermal sensation is not stuffy. It can be concluded that the energy consumption of air conditioning fan was reduced by 35%, the ice storage needed was reduced by 15%, the rated air velocity of air conditioning was analyzed and the effective working time of this system was determined to be not below 96 h for 8 persons to survive in a refuge chamber.

Suggested Citation

  • Du, Yan & Gai, Wen-mei & Jin, Long-zhe & Sheng, Wang, 2017. "Thermal comfort model analysis and optimization performance evaluation of a multifunctional ice storage air conditioning system in a confined mine refuge chamber," Energy, Elsevier, vol. 141(C), pages 964-974.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:964-974
    DOI: 10.1016/j.energy.2017.09.123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217316432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghiaus, Christian, 2013. "Causality issue in the heat balance method for calculating the design heating and cooling load," Energy, Elsevier, vol. 50(C), pages 292-301.
    2. Zhang, Yin & Wang, Xin & Zhang, Yinping & Zhuo, Siwen, 2016. "A simplified model to study the location impact of latent thermal energy storage in building cooling heating and power system," Energy, Elsevier, vol. 114(C), pages 885-894.
    3. Sanaye, Sepehr & Fardad, Abbasali & Mostakhdemi, Masoud, 2011. "Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling," Energy, Elsevier, vol. 36(2), pages 1057-1067.
    4. Parameshwaran, R. & Kalaiselvam, S., 2013. "Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings," Energy, Elsevier, vol. 59(C), pages 194-214.
    5. Shirazi, Ali & Najafi, Behzad & Aminyavari, Mehdi & Rinaldi, Fabio & Taylor, Robert A., 2014. "Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling," Energy, Elsevier, vol. 69(C), pages 212-226.
    6. Xuan, Y.M. & Xiao, F. & Niu, X.F. & Huang, X. & Wang, S.W., 2012. "Research and application of evaporative cooling in China: A review (I) – Research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3535-3546.
    7. Pu, Jing & Liu, Guilian & Feng, Xiao, 2012. "Cumulative exergy analysis of ice thermal storage air conditioning system," Applied Energy, Elsevier, vol. 93(C), pages 564-569.
    8. Al-Sanea, Sami A. & Zedan, M.F., 2008. "Optimized monthly-fixed thermostat-setting scheme for maximum energy-savings and thermal comfort in air-conditioned spaces," Applied Energy, Elsevier, vol. 85(5), pages 326-346, May.
    9. Xuan, Y.M. & Xiao, F. & Niu, X.F. & Huang, X. & Wang, S.W., 2012. "Research and applications of evaporative cooling in China: A review (II)—Systems and equipment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3523-3534.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaiwen Hu & Jian Zheng & Hai Wu & Qian Jia, 2022. "Temperature Distribution and Equipment Layout in a Deep Chamber: A Case Study of a Coal Mine Substation," Sustainability, MDPI, vol. 14(7), pages 1-12, March.
    2. Oh, Seung Jin & Shahzad, Muhammad Wakil & Burhan, Muhammad & Chun, Wongee & Kian Jon, Chua & KumJa, M. & Ng, Kim Choon, 2019. "Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling," Energy, Elsevier, vol. 168(C), pages 505-515.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    2. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    3. Behi, Hamidreza & Karimi, Danial & Jaguemont, Joris & Gandoman, Foad Heidari & Kalogiannis, Theodoros & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications," Energy, Elsevier, vol. 224(C).
    4. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    6. Panchabikesan, Karthik & Vellaisamy, Kumaresan & Ramalingam, Velraj, 2017. "Passive cooling potential in buildings under various climatic conditions in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1236-1252.
    7. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Olabomi, RasaqAdekunle & Jaafar, A. Bakar & Musa, Md Nor & Sarip, Shamsul & Ariffin, Azrin, 2017. "Techno-economic analysis of innovative production and application of solar thermal chilled water for agricultural soil cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 215-224.
    9. Chen, Yi & Yan, Huaxia & Luo, Yimo & Yang, Hongxing, 2019. "A proportional–integral (PI) law based variable speed technology for temperature control in indirect evaporative cooling system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Tejero-González, A. & Franco-Salas, A., 2021. "Optimal operation of evaporative cooling pads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Elsarrag, Esam & Igobo, Opubo N. & Alhorr, Yousef & Davies, Philip A., 2016. "Solar pond powered liquid desiccant evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 124-140.
    12. Beigi, Behnam Feizollah & Mehdipour, Ramin, 2020. "Investigation of cold storage performance to improve management of power generation in thermal power plants in Iran," Energy, Elsevier, vol. 213(C).
    13. Baniyounes, Ali M. & Ghadi, Yazeed Yasin & Rasul, M.G. & Khan, M.M.K., 2013. "An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 781-804.
    14. He, Suoying & Gurgenci, Hal & Guan, Zhiqiang & Huang, Xiang & Lucas, Manuel, 2015. "A review of wetted media with potential application in the pre-cooling of natural draft dry cooling towers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 407-422.
    15. Shahzad, Muhammad Wakil & Lin, Jie & Xu, Ben Bin & Dala, Laurent & Chen, Qian & Burhan, Muhammad & Sultan, Muhammad & Worek, William & Ng, Kim Choon, 2021. "A spatiotemporal indirect evaporative cooler enabled by transiently interceding water mist," Energy, Elsevier, vol. 217(C).
    16. Chen, Yi & Yang, Hongxing & Luo, Yimo, 2017. "Parameter sensitivity analysis and configuration optimization of indirect evaporative cooler (IEC) considering condensation," Applied Energy, Elsevier, vol. 194(C), pages 440-453.
    17. Barthwal, Mohit & Dhar, Atul & Powar, Satvasheel, 2021. "The techno-economic and environmental analysis of genetic algorithm (GA) optimized cold thermal energy storage (CTES) for air-conditioning applications," Applied Energy, Elsevier, vol. 283(C).
    18. Anisimov, Sergey & Pandelidis, Demis & Jedlikowski, Andrzej & Polushkin, Vitaliy, 2014. "Performance investigation of a M (Maisotsenko)-cycle cross-flow heat exchanger used for indirect evaporative cooling," Energy, Elsevier, vol. 76(C), pages 593-606.
    19. Li, Wuyan & Li, Yongcai & Shi, Wenxing & Lu, Jun, 2021. "Energy and exergy study on indirect evaporative cooler used in exhaust air heat recovery," Energy, Elsevier, vol. 235(C).
    20. Li, Wuyan & Wang, Jue & Shi, Wenxing & Lu, Jun, 2022. "High-efficiency cooling solution for exhaust air heat pump: Modeling and experimental validation," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:964-974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.