IDEAS home Printed from
   My bibliography  Save this article

Cumulative exergy analysis of ice thermal storage air conditioning system


  • Pu, Jing
  • Liu, Guilian
  • Feng, Xiao


Based on the cumulative exergy analysis method, the effect of incorporating the Ice Thermal Storage (ITS) air conditioning system in power supply is analyzed. Not only the cumulative exergy of air conditioning system is considered, but also that of the processes consuming the power generated by the same peak regulating unit. The results show that the total cumulative exergy consumption of all processes consuming the power supplied by the peak generating unit, increases as the ITS system is applied. However, the average cumulative exergy variation, which is the ratio between the increment of the cumulative exergy consumption (ΔCEx) and the cooling load of the ITS system (QITS), decreases slightly as QITS increases. It exhibits a linear relationship with the operating load of the power generating unit and QITS. And, it decreases as either of the two parameters increases. These results are verified by two case studies.

Suggested Citation

  • Pu, Jing & Liu, Guilian & Feng, Xiao, 2012. "Cumulative exergy analysis of ice thermal storage air conditioning system," Applied Energy, Elsevier, pages 564-569.
  • Handle: RePEc:eee:appene:v:93:y:2012:i:c:p:564-569 DOI: 10.1016/j.apenergy.2011.12.003

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ashok, S. & Banerjee, R., 2003. "Optimal cool storage capacity for load management," Energy, Elsevier, vol. 28(2), pages 115-126.
    2. Yau, Y.H. & Lee, S.K., 2010. "Feasibility study of an ice slurry-cooling coil for HVAC and R systems in a tropical building," Applied Energy, Elsevier, pages 2699-2711.
    3. Tay, N.H.S. & Belusko, M. & Bruno, F., 2012. "Experimental investigation of tubes in a phase change thermal energy storage system," Applied Energy, Elsevier, vol. 90(1), pages 288-297.
    4. Medrano, M. & Yilmaz, M.O. & Nogués, M. & Martorell, I. & Roca, Joan & Cabeza, Luisa F., 2009. "Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems," Applied Energy, Elsevier, pages 2047-2055.
    5. Lee, Wen-Shing & Chen, Yi -Ting & Wu, Ting-Hau, 2009. "Optimization for ice-storage air-conditioning system using particle swarm algorithm," Applied Energy, Elsevier, pages 1589-1595.
    6. Liu, K. & Güven, H. & Beyene, A. & Lowrey, P., 1994. "A comparison of the field performance of thermal energy storage (TES) and conventional chiller systems," Energy, Elsevier, vol. 19(8), pages 889-900.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Li, Xiao-Yan & Qu, Dong-Qi & Yang, Liu & Li, Kai-Di, 2017. "Experimental and numerical investigation of discharging process of direct contact thermal energy storage for use in conventional air-conditioning systems," Applied Energy, Elsevier, vol. 189(C), pages 211-220.
    2. Qv, Dehu & Dong, Bingbing & Cao, Lin & Ni, Long & Wang, Jijin & Shang, Runxin & Yao, Yang, 2017. "An experimental and theoretical study on an injection-assisted air-conditioner using R32 in the refrigeration cycle," Applied Energy, Elsevier, vol. 185(P1), pages 791-804.
    3. Ruddell, Benjamin L. & Salamanca, Francisco & Mahalov, Alex, 2014. "Reducing a semiarid city’s peak electrical demand using distributed cold thermal energy storage," Applied Energy, Elsevier, vol. 134(C), pages 35-44.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:93:y:2012:i:c:p:564-569. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.