IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v193y2020ics0360544219324636.html
   My bibliography  Save this article

Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran

Author

Listed:
  • Ghasemi-Mobtaker, Hassan
  • Kaab, Ali
  • Rafiee, Shahin

Abstract

Today, intensive use of energy sources leads to environmental damages such as global warming and resources depletion. Hence, this study provided energy, environmental and economic overview of wheat cultivation in Hamedan province, Iran. The initial data were collected from 75 wheat farms applying face-to-face interview technique. The prepared data related to the 2017–2018 production cycle. The energy analysis results demonstrated that the total energy consumption and output energy in wheat cultivation were 43054.63 MJ ha−1 and 117407.13 MJ ha−1, respectively. Energy productivity, energy use efficiency and net energy gain were computed as 0.12 kg MJ−1, 2.73 and 74352.50 MJ ha−1, respectively. Economic analysis showed that total value and cost of wheat production were 854.86 $ ha−1 and 366.57 $ ha−1, respectively. Net return was 488.29 $ ha−1 and benefit to cost ratio computed as 2.33 in the investigated region. Wheat environmental impacts were evaluated by applying life cycle assessment methodology. Results of environmental impacts showed the largest emissions were related to marine aquatic ecotoxicity (319757.6377 kg 1,4-DB eq.), abiotic depletion (fossil fuels) (6673.1319 MJ) and global warming potential (624.2944 kg CO2eq.). Electricity was a hotspot in abiotic depletion (fossil fuels), global warming potential, freshwater aquatic ecotoxicity, ozone layer depletion and photochemical oxidation impact categories. Cumulative exergy demand results indicated that the rates of non-renewable fossil (7088.05 MJ ha−1) for wheat farms mainly resulted from electricity and nitrogen fertilizer.

Suggested Citation

  • Ghasemi-Mobtaker, Hassan & Kaab, Ali & Rafiee, Shahin, 2020. "Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran," Energy, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324636
    DOI: 10.1016/j.energy.2019.116768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219324636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pathak, H. & Wassmann, R., 2007. "Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients," Agricultural Systems, Elsevier, vol. 94(3), pages 807-825, June.
    2. Karimi, Poolad & Qureshi, Asad Sarwar & Bahramloo, Reza & Molden, David, 2012. "Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran," Agricultural Water Management, Elsevier, vol. 108(C), pages 52-60.
    3. Kaab, Ali & Sharifi, Mohammad & Mobli, Hossein & Nabavi-Pelesaraei, Ashkan & Chau, Kwok-wing, 2019. "Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production," Energy, Elsevier, vol. 181(C), pages 1298-1320.
    4. Ozkan, Burhan & Akcaoz, Handan & Fert, Cemal, 2004. "Energy input–output analysis in Turkish agriculture," Renewable Energy, Elsevier, vol. 29(1), pages 39-51.
    5. Singh, H. & Singh, A.K. & Kushwaha, H.L. & Singh, Amit, 2007. "Energy consumption pattern of wheat production in India," Energy, Elsevier, vol. 32(10), pages 1848-1854.
    6. Nikkhah, Amin & Royan, Mahsa & Khojastehpour, Mehdi & Bacenetti, Jacopo, 2017. "Environmental impacts modeling of Iranian peach production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 677-682.
    7. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    8. Pu, Jing & Liu, Guilian & Feng, Xiao, 2012. "Cumulative exergy analysis of ice thermal storage air conditioning system," Applied Energy, Elsevier, vol. 93(C), pages 564-569.
    9. Rahman, Sanzidur & Hasan, M. Kamrul, 2014. "Energy productivity and efficiency of wheat farming in Bangladesh," Energy, Elsevier, vol. 66(C), pages 107-114.
    10. Zangeneh, Morteza & Omid, Mahmoud & Akram, Asadollah, 2010. "A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran," Energy, Elsevier, vol. 35(7), pages 2927-2933.
    11. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heidari, Mohammad Davoud, 2014. "Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran," Energy, Elsevier, vol. 66(C), pages 139-149.
    12. Soltani, Afshin & Rajabi, M.H. & Zeinali, E. & Soltani, Elias, 2013. "Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran," Energy, Elsevier, vol. 50(C), pages 54-61.
    13. Pishgar Komleh, S.H. & Keyhani, A. & Rafiee, Sh. & Sefeedpary, P., 2011. "Energy use and economic analysis of corn silage production under three cultivated area levels in Tehran province of Iran," Energy, Elsevier, vol. 36(5), pages 3335-3341.
    14. Unakitan, G. & Hurma, H. & Yilmaz, F., 2010. "An analysis of energy use efficiency of canola production in Turkey," Energy, Elsevier, vol. 35(9), pages 3623-3627.
    15. Mostashari-Rad, Fatemeh & Nabavi-Pelesaraei, Ashkan & Soheilifard, Farshad & Hosseini-Fashami, Fatemeh & Chau, Kwok-wing, 2019. "Energy optimization and greenhouse gas emissions mitigation for agricultural and horticultural systems in Northern Iran," Energy, Elsevier, vol. 186(C).
    16. Alhajj Ali, Salem & Tedone, Luigi & De Mastro, Giuseppe, 2013. "A comparison of the energy consumption of rainfed durum wheat under different management scenarios in southern Italy," Energy, Elsevier, vol. 61(C), pages 308-318.
    17. Nabavi-Pelesaraei, Ashkan & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Hosseinzadeh-Bandbafha, Homa & Chau, Kwok-wing, 2019. "Assessment of optimized pattern in milling factories of rice production based on energy, environmental and economic objectives," Energy, Elsevier, vol. 169(C), pages 1259-1273.
    18. Houshyar, Ehsan & Grundmann, Philipp, 2017. "Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran," Energy, Elsevier, vol. 122(C), pages 11-24.
    19. Mohammadi, Ali & Rafiee, Shahin & Jafari, Ali & Keyhani, Alireza & Mousavi-Avval, Seyed Hashem & Nonhebel, Sanderine, 2014. "Energy use efficiency and greenhouse gas emissions of farming systems in north Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 724-733.
    20. Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
    21. Khan, S. & Khan, M.A. & Hanjra, M.A. & Mu, J., 2009. "Pathways to reduce the environmental footprints of water and energy inputs in food production," Food Policy, Elsevier, vol. 34(2), pages 141-149, April.
    22. Rajabi Hamedani, Sara & Keyhani, Alireza & Alimardani, Reza, 2011. "Energy use patterns and econometric models of grape production in Hamadan province of Iran," Energy, Elsevier, vol. 36(11), pages 6345-6351.
    23. Tabatabaeefar, A. & Emamzadeh, H. & Varnamkhasti, M. Ghasemi & Rahimizadeh, R. & Karimi, M., 2009. "Comparison of energy of tillage systems in wheat production," Energy, Elsevier, vol. 34(1), pages 41-45.
    24. Yildizhan, Hasan & Taki, Morteza, 2018. "Assessment of tomato production process by cumulative exergy consumption approach in greenhouse and open field conditions: Case study of Turkey," Energy, Elsevier, vol. 156(C), pages 401-408.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zahra Payandeh & Ahmad Jahanbakhshi & Tarahom Mesri-Gundoshmian & Sean Clark, 2021. "Improving Energy Efficiency of Barley Production Using Joint Data Envelopment Analysis (DEA) and Life Cycle Assessment (LCA): Evaluation of Greenhouse Gas Emissions and Optimization Approach," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    2. Elhami, Behzad & Nejad Raini, Mahmoud Ghasemi & Taki, Morteza & Marzban, Afshin & Heidarisoltanabadi, Mohsen, 2021. "Analysis and comparison of energy-economic-environmental cycle in two cultivation methods (seeding and transplanting) for onion production (case study: central parts of Iran)," Renewable Energy, Elsevier, vol. 178(C), pages 875-890.
    3. Hessampour, Reza & Bastani, Aboubakr & Hassani, Mehrdad & Failla, Sabina & Vaverková, Magdalena Daria & Halog, Anthony, 2023. "Joint life cycle assessment and data envelopment analysis for the benchmarking of energy, exergy, environmental effects, and water footprint in the canned apple supply chain," Energy, Elsevier, vol. 278(C).
    4. Hamed Rafiee & Milad Aminizadeh & Elham Mehrparvar Hosseini & Hanane Aghasafari & Ali Mohammadi, 2022. "A Cluster Analysis on the Energy Use Indicators and Carbon Footprint of Irrigated Wheat Cropping Systems," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    5. Ali Mohammadi & G. Venkatesh & Samieh Eskandari & Shahin Rafiee, 2022. "Eco-Efficiency Analysis to Improve Environmental Performance of Wheat Production," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    6. Marius Kazlauskas & Indrė Bručienė & Dainius Savickas & Vilma Naujokienė & Sidona Buragienė & Dainius Steponavičius & Kęstutis Romaneckas & Egidijus Šarauskis, 2023. "Life Cycle Assessment of Winter Wheat Production Using Precision and Conventional Seeding Technologies," Sustainability, MDPI, vol. 15(19), pages 1-13, September.
    7. Jankowski, Krzysztof Józef & Dubis, Bogdan & Kozak, Marcin, 2021. "Sewage sludge and the energy balance of Jerusalem artichoke production - A case study in north-eastern Poland," Energy, Elsevier, vol. 236(C).
    8. Qu, Ziren & Luo, Ning & Guo, Jiameng & Xu, Jie & Wang, Pu & Meng, Qingfeng, 2024. "Enhancing sustainability in the new variety-based low emergy system for maize production by nitrogen optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    9. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).
    10. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    11. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    12. Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
    13. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    14. Xu, Bin & Lin, Boqiang, 2020. "Investigating drivers of CO2 emission in China’s heavy industry: A quantile regression analysis," Energy, Elsevier, vol. 206(C).
    15. Miguel Vigil & Maria Pedrosa Laza & Henar Moran-Palacios & JV Alvarez Cabal, 2020. "Optimizing the Environmental Profile of Fresh-Cut Produce: Life Cycle Assessment of Novel Decontamination and Sanitation Techniques," Sustainability, MDPI, vol. 12(9), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    2. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    3. Morteza Zangeneh & Narges Banaeian & Sean Clark, 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    4. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    5. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim, 2021. "Investigation of Energy Consumption and Associated CO 2 Emissions for Wheat–Rice Crop Rotation Farming," Energies, MDPI, vol. 14(16), pages 1-18, August.
    6. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Narges Banaeian & Muhammad Usman & Sobhy M. Ibrahim & Muhammad U. B. U. Butt & Muhammad Waseem & Imran Ali & Aamir Shakoor & Zahid M. Khan, 2020. "Investigation of Input and Output Energy for Wheat Production: A Comprehensive Study for Tehsil Mailsi (Pakistan)," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    7. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    8. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).
    9. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    10. Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.
    11. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    12. Hamed Rafiee & Milad Aminizadeh & Elham Mehrparvar Hosseini & Hanane Aghasafari & Ali Mohammadi, 2022. "A Cluster Analysis on the Energy Use Indicators and Carbon Footprint of Irrigated Wheat Cropping Systems," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    13. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    14. Unakıtan, Gökhan & Kumbar, Nihal, 2019. "Analysis of feed conversion efficiency in dairy cattle farms in Thrace Region, Turkey," Energy, Elsevier, vol. 176(C), pages 589-595.
    15. Yan, Jie & Kong, Zhaoyang & Liu, Yize & Li, Ning & Yang, Xiaolin & Zhuang, Minghao, 2023. "A high-resolution energy use efficiency assessment of China’s staple food crop production and associated improvement potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Unakıtan, Gökhan & Aydın, Başak, 2018. "A comparison of energy use efficiency and economic analysis of wheat and sunflower production in Turkey: A case study in Thrace Region," Energy, Elsevier, vol. 149(C), pages 279-285.
    17. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    18. Pishgar-Komleh, Seyyed Hassan & Keyhani, Alireza & Mostofi-Sarkari, Mohammad Reza & Jafari, Ali, 2012. "Energy and economic analysis of different seed corn harvesting systems in Iran," Energy, Elsevier, vol. 43(1), pages 469-476.
    19. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    20. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.