IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i3d10.1007_s10668-023-02952-4.html
   My bibliography  Save this article

Investigate the energy–environmental indices for pomegranate molasses production: evidence from Isfahan, Iran

Author

Listed:
  • Amin Lotfalian Dehkordi

    (Shahrekord University)

  • Somaye Shadmanfar

    (University of Tehran)

Abstract

Today, the study and analysis of energy and environmental pollutants in agricultural lands, greenhouses and gardens alone cannot be effective in relation to the efficiency of agricultural products. Therefore, in the post-harvest stages, two issues of energy and environment are addressed. Based on this, the current research was conducted with the aim of investigating the energy–environmental indicators of pomegranate paste production in Iran. The results showed that the total energy input, energy ratio (ER) and energy productivity (EP) were calculated as 35,027 MJ/ton, 0.103 and 0.0002 tons of paste/total cycle energy, respectively. Energy required to produce paste bottles and pomegranate energy (chemical fertilizers and diesel fuel) for processing were the most consumed inputs in the study areas with 13,500 (38%) and 13,131 (37%) MJ.t−1, respectively. Life cycle assessment (LCA) and the IMPACT 2002+ method were used to calculate the environmental effects, and 1 ton of pomegranate paste produced was determined as a functional unit (FU). Based on the findings obtained from the environmental section, the polyethylene bottles production had the highest emissions on the ecosystem quality (EQ), human health (HT), climate change (CC) and resources reduction (RR) damage categories as 94%, 72%, 71% and 92%, respectively. Based on the normalization results, HH, CC, RR and EQ have the highest values with 126.63, 78.23, 54.94 and 3.71, respectively. Also, the final impact was calculated as 263.53 pPt t−1, and HH had the highest contributions to it. Results taken from the post-harvest section (specially packaging) confirmed the requisiteness of agricultural crops whole cycle investigation (cradle-to-grave analysis). The findings show that by reducing fossil and non-renewable inputs (chemical fertilizers, electricity and diesel fuel) and replacing them with clean energy, it is possible to achieve sustainability in product production. By managing the consumption of inputs, organic products with high-energy efficiency can be produced and the world can use its economic and social benefits.

Suggested Citation

  • Amin Lotfalian Dehkordi & Somaye Shadmanfar, 2024. "Investigate the energy–environmental indices for pomegranate molasses production: evidence from Isfahan, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 6109-6129, March.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-02952-4
    DOI: 10.1007/s10668-023-02952-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-02952-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-02952-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Fallahpour & A. Aminghafouri & A. Ghalegolab Behbahani & M. Bannayan, 2012. "The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(6), pages 979-992, December.
    2. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    3. Jane Hayek & Makram El Bachawati & Rima Manneh, 2021. "Life cycle assessment and water footprint scarcity of yogurt," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18362-18393, December.
    4. Elhami, Behzad & Nejad Raini, Mahmoud Ghasemi & Taki, Morteza & Marzban, Afshin & Heidarisoltanabadi, Mohsen, 2021. "Analysis and comparison of energy-economic-environmental cycle in two cultivation methods (seeding and transplanting) for onion production (case study: central parts of Iran)," Renewable Energy, Elsevier, vol. 178(C), pages 875-890.
    5. Ghorbani, Reza & Mondani, Farzad & Amirmoradi, Shahram & Feizi, Hassan & Khorramdel, Surror & Teimouri, Mozhgan & Sanjani, Sara & Anvarkhah, Sepideh & Aghel, Hassan, 2011. "A case study of energy use and economical analysis of irrigated and dryland wheat production systems," Applied Energy, Elsevier, vol. 88(1), pages 283-288, January.
    6. Elhami, Behzad & Ghasemi Nejad Raini, Mahmoud & Soheili-Fard, Farshad, 2019. "Energy and environmental indices through life cycle assessment of raisin production: A case study (Kohgiluyeh and Boyer-Ahmad Province, Iran)," Renewable Energy, Elsevier, vol. 141(C), pages 507-515.
    7. Khanali, Majid & Akram, Asadollah & Behzadi, Javad & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2021. "Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm," Applied Energy, Elsevier, vol. 284(C).
    8. Dwivedi, Puneet & Spreen, Thomas & Goodrich-Schneider, Renée, 2012. "Global warming impact of Florida’s Not-From-Concentrate (NFC) orange juice," Agricultural Systems, Elsevier, vol. 108(C), pages 104-111.
    9. Rajabi Hamedani, Sara & Keyhani, Alireza & Alimardani, Reza, 2011. "Energy use patterns and econometric models of grape production in Hamadan province of Iran," Energy, Elsevier, vol. 36(11), pages 6345-6351.
    10. Chen, C. & Habert, G. & Bouzidi, Y. & Jullien, A. & Ventura, A., 2010. "LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1231-1240.
    11. Ghasemi-Mobtaker, Hassan & Kaab, Ali & Rafiee, Shahin, 2020. "Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    2. Zahra Payandeh & Ahmad Jahanbakhshi & Tarahom Mesri-Gundoshmian & Sean Clark, 2021. "Improving Energy Efficiency of Barley Production Using Joint Data Envelopment Analysis (DEA) and Life Cycle Assessment (LCA): Evaluation of Greenhouse Gas Emissions and Optimization Approach," Sustainability, MDPI, vol. 13(11), pages 1-16, May.
    3. Mousavi, Masoumeh & Taki, Morteza & Raeini, Mahmoud Ghaseminejd & Soheilifard, Farshad, 2023. "Evaluation of energy consumption and environmental impacts of strawberry production in different greenhouse structures using life cycle assessment (LCA) approach," Energy, Elsevier, vol. 280(C).
    4. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    5. Ershadfath, Farnaz & Shahnazari, Ali & Sarjaz, Mahmoud Raeini & Moghadasi, Omid Ali & Soheilifard, Farshad & Andaryani, Soghra & Khosravi, Rezvan & Ebrahimi, Raheleh & Hashemi, Fatemeh & Trolle, Denni, 2024. "Water-energy-food-greenhouse gas nexus: An approach to solutions for water scarcity in agriculture of a semi-arid region," Agricultural Systems, Elsevier, vol. 219(C).
    6. Sahar Safarian & Sorena Sattari & Runar Unnthorsson & Zeinab Hamidzadeh, 2019. "Prioritization of Bioethanol Production Systems from Agricultural and Waste Agricultural Biomass Using Multi-criteria Decision Making," Biophysical Economics and Resource Quality, Springer, vol. 4(1), pages 1-16, March.
    7. Hamed Rafiee & Milad Aminizadeh & Elham Mehrparvar Hosseini & Hanane Aghasafari & Ali Mohammadi, 2022. "A Cluster Analysis on the Energy Use Indicators and Carbon Footprint of Irrigated Wheat Cropping Systems," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    8. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).
    9. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    10. Elhami, Behzad & Nejad Raini, Mahmoud Ghasemi & Taki, Morteza & Marzban, Afshin & Heidarisoltanabadi, Mohsen, 2021. "Analysis and comparison of energy-economic-environmental cycle in two cultivation methods (seeding and transplanting) for onion production (case study: central parts of Iran)," Renewable Energy, Elsevier, vol. 178(C), pages 875-890.
    11. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    12. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    13. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    14. Soltani, Shiva & Mosavi, Seyed Habibollah & Saghaian, Sayed H. & Azhdari, Somayeh & Alamdarlo, Hamed N. & Khalilian, Sadegh, 2023. "Climate change and energy use efficiency in arid and semiarid agricultural areas: A case study of Hamadan-Bahar plain in Iran," Energy, Elsevier, vol. 268(C).
    15. Saade, Marcella Ruschi Mendes & Silva, Maristela Gomes da & Gomes, Vanessa, 2015. "Appropriateness of environmental impact distribution methods to model blast furnace slag recycling in cement making," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 40-47.
    16. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    17. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    18. Arianne Provost‐Savard & Guillaume Majeau‐Bettez, 2024. "Substitution modeling can coherently be used in attributional life cycle assessments," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 410-425, June.
    19. Dorokhov, V.V. & Kuznetsov, G.V. & Vershinina, K.Yu. & Strizhak, P.A., 2021. "Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making," Energy, Elsevier, vol. 234(C).
    20. Kaur, Navneet & Vashist, Krishan Kumar & Brar, A.S., 2021. "Energy and productivity analysis of maize based crop sequences compared to rice-wheat system under different moisture regimes," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:3:d:10.1007_s10668-023-02952-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.