IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v66y2014icp107-114.html
   My bibliography  Save this article

Energy productivity and efficiency of wheat farming in Bangladesh

Author

Listed:
  • Rahman, Sanzidur
  • Hasan, M. Kamrul

Abstract

Wheat is the second most important cereal crop in Bangladesh and production is highly sensitive to variations in the environment. We estimate productivity and energy efficiency of wheat farming in Bangladesh by applying a stochastic production frontier approach while accounting for the environmental constraints affecting production. Wheat farming is energy efficient with a net energy balance of 20,596 MJ per ha and energy ratio of 2.34. Environmental constraints such as a combination of unsuitable land, weed and pest attack, bad weather, planting delay and infertile soils significantly reduce wheat production and its energy efficiency. Environmental constraints account for a mean energy efficiency of 3 percentage points. Mean technical efficiency is 88% thereby indicating that elimination of inefficiencies can increase wheat energy output by 12%. Farmers' education, access to agricultural information and training in wheat production significantly improves efficiency, whereas events such as a delay in planting and first fertilization significantly reduce it. Policy recommendations include development of varieties that are resistant to environmental constraints and suitable for marginal areas; improvement of wheat farming practices; and investments in education and training of farmers as well as dissemination of information.

Suggested Citation

  • Rahman, Sanzidur & Hasan, M. Kamrul, 2014. "Energy productivity and efficiency of wheat farming in Bangladesh," Energy, Elsevier, vol. 66(C), pages 107-114.
  • Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:107-114
    DOI: 10.1016/j.energy.2013.12.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214000036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.12.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nassiri, Seyed Mehdi & Singh, Surendra, 2009. "Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique," Applied Energy, Elsevier, vol. 86(7-8), pages 1320-1325, July.
    2. Morris, Michael & Chowdhury, Nuimuddin & Meisner, Craig, 1996. "Economics of wheat production in Bangladesh," Food Policy, Elsevier, vol. 21(6), pages 541-560, December.
    3. Pishgar-Komleh, S.H. & Sefeedpari, P. & Rafiee, S., 2011. "Energy and economic analysis of rice production under different farm levels in Guilan province of Iran," Energy, Elsevier, vol. 36(10), pages 5824-5831.
    4. Ozkan, Burhan & Ceylan, R. Figen & Kizilay, Hatice, 2011. "Energy inputs and crop yield relationships in greenhouse winter crop tomato production," Renewable Energy, Elsevier, vol. 36(11), pages 3217-3221.
    5. Hamedani, Sara Rajabi & Shabani, Zeinab & Rafiee, Shahin, 2011. "Energy inputs and crop yield relationship in potato production in Hamadan province of Iran," Energy, Elsevier, vol. 36(5), pages 2367-2371.
    6. Banaeian, Narges & Zangeneh, Morteza, 2011. "Study on energy efficiency in corn production of Iran," Energy, Elsevier, vol. 36(8), pages 5394-5402.
    7. Mani, Indra & Kumar, Pradeep & Panwar, J.S. & Kant, Kamal, 2007. "Variation in energy consumption in production of wheat–maize with varying altitudes in hilly regions of Himachal Pradesh, India," Energy, Elsevier, vol. 32(12), pages 2336-2339.
    8. M. N. Asadullah & S. Rahman, 2009. "Farm productivity and efficiency in rural Bangladesh: the role of education revisited," Applied Economics, Taylor & Francis Journals, vol. 41(1), pages 17-33.
    9. Ghorbani, Reza & Mondani, Farzad & Amirmoradi, Shahram & Feizi, Hassan & Khorramdel, Surror & Teimouri, Mozhgan & Sanjani, Sara & Anvarkhah, Sepideh & Aghel, Hassan, 2011. "A case study of energy use and economical analysis of irrigated and dryland wheat production systems," Applied Energy, Elsevier, vol. 88(1), pages 283-288, January.
    10. Unakitan, G. & Hurma, H. & Yilmaz, F., 2010. "An analysis of energy use efficiency of canola production in Turkey," Energy, Elsevier, vol. 35(9), pages 3623-3627.
    11. Rahman, Sanzidur & Rahman, Md. Sayedur, 2013. "Energy productivity and efficiency of maize accounting for the choice of growing season and environmental factors: An empirical analysis from Bangladesh," Energy, Elsevier, vol. 49(C), pages 329-336.
    12. Rahman, Sanzidur & Barmon, Basanta K., 2012. "Energy productivity and efficiency of the ‘gher’ (prawn-fish-rice) farming system in Bangladesh," Energy, Elsevier, vol. 43(1), pages 293-300.
    13. Sherlund, Shane M. & Barrett, Christopher B. & Adesina, Akinwumi A., 2002. "Smallholder technical efficiency controlling for environmental production conditions," Journal of Development Economics, Elsevier, vol. 69(1), pages 85-101, October.
    14. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    15. Tabatabaeefar, A. & Emamzadeh, H. & Varnamkhasti, M. Ghasemi & Rahimizadeh, R. & Karimi, M., 2009. "Comparison of energy of tillage systems in wheat production," Energy, Elsevier, vol. 34(1), pages 41-45.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahman, Sanzidur & Rahman, Md. Sayedur, 2013. "Energy productivity and efficiency of maize accounting for the choice of growing season and environmental factors: An empirical analysis from Bangladesh," Energy, Elsevier, vol. 49(C), pages 329-336.
    2. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    3. Soltani, Afshin & Rajabi, M.H. & Zeinali, E. & Soltani, Elias, 2013. "Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran," Energy, Elsevier, vol. 50(C), pages 54-61.
    4. Abolfazl Nasseri, 2023. "Effects of tillage practices on wheat production using groundwater-based irrigation: multidimensional analysis of energy use, greenhouse gases emissions and economic parameters," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7047-7074, July.
    5. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    6. Rahman, Sanzidur & Kazal, Mohammad Mizanul Haque, 2015. "Whether crop diversification is energy efficient: An empirical analysis from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 745-754.
    7. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    8. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    9. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    10. Rahman, Sanzidur & Barmon, Basanta K., 2012. "Energy productivity and efficiency of the ‘gher’ (prawn-fish-rice) farming system in Bangladesh," Energy, Elsevier, vol. 43(1), pages 293-300.
    11. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    12. Sanzidur Rahman & Basanta Kumar Barmon, 2018. "Total Factor Energy Productivity and Efficiency Changes of the Gher (Prawn-Carp-Rice) Farming System in Bangladesh: A Stochastic Input Distance Function Approach," Energies, MDPI, vol. 11(12), pages 1-17, December.
    13. Elahi, Ehsan & Weijun, Cui & Jha, Sunil Kumar & Zhang, Huiming, 2019. "Estimation of realistic renewable and non-renewable energy use targets for livestock production systems utilising an artificial neural network method: A step towards livestock sustainability," Energy, Elsevier, vol. 183(C), pages 191-204.
    14. Aravindakshan, Sreejith & Rossi, Frederick J. & Krupnik, Timothy J., 2015. "What does benchmarking of wheat farmers practicing conservation tillage in the eastern Indo-Gangetic Plains tell us about energy use efficiency? An application of slack-based data envelopment analysis," Energy, Elsevier, vol. 90(P1), pages 483-493.
    15. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    16. Ershadfath, Farnaz & Shahnazari, Ali & Sarjaz, Mahmoud Raeini & Moghadasi, Omid Ali & Soheilifard, Farshad & Andaryani, Soghra & Khosravi, Rezvan & Ebrahimi, Raheleh & Hashemi, Fatemeh & Trolle, Denni, 2024. "Water-energy-food-greenhouse gas nexus: An approach to solutions for water scarcity in agriculture of a semi-arid region," Agricultural Systems, Elsevier, vol. 219(C).
    17. Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.
    18. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    19. Stanisław Bielski & Renata Marks-Bielska & Paweł Wiśniewski, 2022. "Investigation of Energy and Economic Balance and GHG Emissions in the Production of Different Cultivars of Buckwheat ( Fagopyrum esculentum Moench): A Case Study in Northeastern Poland," Energies, MDPI, vol. 16(1), pages 1-24, December.
    20. Mussa, Richard, 2014. "Externalities of Education on Efficiency and Production Uncertainty of Maize in Rural Malawi," MPRA Paper 54628, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:66:y:2014:i:c:p:107-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.