IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i12p2336-2339.html
   My bibliography  Save this article

Variation in energy consumption in production of wheat–maize with varying altitudes in hilly regions of Himachal Pradesh, India

Author

Listed:
  • Mani, Indra
  • Kumar, Pradeep
  • Panwar, J.S.
  • Kant, Kamal

Abstract

Availability and consumption pattern of energy and constraints in its proper supply and management for crop production was studied in wheat–maize cropping system in selected hilly rural villages located at different altitudes of Himachal Pradesh in Western Himalayas. The information was collected from 90 farmers drawn from nine villages, three each from three selected altitudes using two-stage random sampling. The average values of energy consumption for wheat crop in low and high hills were, respectively, 41.68 and 110.8MJ/ha and those for maize crop were, respectively, 43.43 and 81.33MJ/ha. The productivity of wheat crop ranged from 1077 to 1840.9kg/ha and for maize crop from 1108 to 1573kg/ha, in low and high hills, respectively. The major constraints in the proper use of energy in crop production were the uncertain supply of different inputs due to difficult and undulating terrain, poor land holdings and non-availability of suitable technologies. The introduction of small powered equipment, precise use of seed and fertilizer and proper management of irrigation water were recommended for efficient energy use and better crop productivity.

Suggested Citation

  • Mani, Indra & Kumar, Pradeep & Panwar, J.S. & Kant, Kamal, 2007. "Variation in energy consumption in production of wheat–maize with varying altitudes in hilly regions of Himachal Pradesh, India," Energy, Elsevier, vol. 32(12), pages 2336-2339.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:12:p:2336-2339
    DOI: 10.1016/j.energy.2007.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544207001247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2007.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hafiz Muhammad Abrar Ilyas & Majeed Safa & Alison Bailey & Sara Rauf & Azeem Khan, 2020. "Energy Efficiency Outlook of New Zealand Dairy Farming Systems: An Application of Data Envelopment Analysis (DEA) Approach," Energies, MDPI, vol. 13(1), pages 1-14, January.
    2. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    3. Unakitan, G. & Hurma, H. & Yilmaz, F., 2010. "An analysis of energy use efficiency of canola production in Turkey," Energy, Elsevier, vol. 35(9), pages 3623-3627.
    4. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Narges Banaeian & Muhammad Usman & Sobhy M. Ibrahim & Muhammad U. B. U. Butt & Muhammad Waseem & Imran Ali & Aamir Shakoor & Zahid M. Khan, 2020. "Investigation of Input and Output Energy for Wheat Production: A Comprehensive Study for Tehsil Mailsi (Pakistan)," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    5. Rahman, Sanzidur & Rahman, Md. Sayedur, 2013. "Energy productivity and efficiency of maize accounting for the choice of growing season and environmental factors: An empirical analysis from Bangladesh," Energy, Elsevier, vol. 49(C), pages 329-336.
    6. Houshyar, Ehsan & Zareifard, Hamid Reza & Grundmann, Philipp & Smith, Pete, 2015. "Determining efficiency of energy input for silage corn production: An econometric approach," Energy, Elsevier, vol. 93(P2), pages 2166-2174.
    7. Bojacá, C.R. & Schrevens, E., 2010. "Energy assessment of peri-urban horticulture and its uncertainty: Case study for Bogota, Colombia," Energy, Elsevier, vol. 35(5), pages 2109-2118.
    8. Khan, S. & Khan, M.A. & Hanjra, M.A. & Mu, J., 2009. "Pathways to reduce the environmental footprints of water and energy inputs in food production," Food Policy, Elsevier, vol. 34(2), pages 141-149, April.
    9. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    10. Yuan, Shen & Peng, Shaobing & Wang, Dong & Man, Jianguo, 2018. "Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China," Energy, Elsevier, vol. 160(C), pages 184-191.
    11. Singh, Pritpal & Singh, Gurdeep & Gupta, Alok & Sodhi, Gurjinder Pal Singh, 2023. "Data envelopment analysis based energy optimization for improving energy efficiency in wheat established following rice residue management in rice-wheat cropping system," Energy, Elsevier, vol. 284(C).
    12. Kaur, Karman & Prasad, Narayan & Prasad, Narayan, 2021. "Modelling Input Energy Used in Wheat Production in India Using Artificial Neural Network," 2021 Conference, August 17-31, 2021, Virtual 315051, International Association of Agricultural Economists.
    13. Safa, M. & Samarasinghe, S., 2011. "Determination and modelling of energy consumption in wheat production using neural networks: “A case study in Canterbury province, New Zealand”," Energy, Elsevier, vol. 36(8), pages 5140-5147.
    14. Djevic, M. & Dimitrijevic, A., 2009. "Energy consumption for different greenhouse constructions," Energy, Elsevier, vol. 34(9), pages 1325-1331.
    15. Fan Fan & Bei Li & Weifeng Zhang & John R. Porter & Fusuo Zhang, 2021. "Evaluation of Sustainability of Irrigated Crops in Arid Regions, China," Sustainability, MDPI, vol. 13(1), pages 1-15, January.
    16. Rahman, Sanzidur & Kazal, Mohammad Mizanul Haque, 2015. "Whether crop diversification is energy efficient: An empirical analysis from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 745-754.
    17. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    18. Houshyar, Ehsan & Grundmann, Philipp, 2017. "Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran," Energy, Elsevier, vol. 122(C), pages 11-24.
    19. Mileusnić, Z.I. & Petrović, D.V. & Đević, M.S., 2010. "Comparison of tillage systems according to fuel consumption," Energy, Elsevier, vol. 35(1), pages 221-228.
    20. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim, 2021. "Investigation of Energy Consumption and Associated CO 2 Emissions for Wheat–Rice Crop Rotation Farming," Energies, MDPI, vol. 14(16), pages 1-18, August.
    21. Rahman, Sanzidur & Hasan, M. Kamrul, 2014. "Energy productivity and efficiency of wheat farming in Bangladesh," Energy, Elsevier, vol. 66(C), pages 107-114.
    22. Rahman, Sanzidur & Barmon, Basanta K., 2012. "Energy productivity and efficiency of the ‘gher’ (prawn-fish-rice) farming system in Bangladesh," Energy, Elsevier, vol. 43(1), pages 293-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:12:p:2336-2339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.