IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223020091.html
   My bibliography  Save this article

Data envelopment analysis based energy optimization for improving energy efficiency in wheat established following rice residue management in rice-wheat cropping system

Author

Listed:
  • Singh, Pritpal
  • Singh, Gurdeep
  • Gupta, Alok
  • Sodhi, Gurjinder Pal Singh

Abstract

Wheat (Triticum aestivum L.) is a winter cereal crop with higher energy footprints. We therefore aimed to budget energy use, establish input-output relationships, and to perform data envelopment analysis (DEA) based optimization in wheat established with innovative super seeder technology. Data-set of 45 decision-making units (DMUs) collected during face-to-face interviews were changed to energy units for enhancing their energy efficiency. These results revealed that total energy input (EI) of 22.6 GJ ha−1 and output energy of 125.3 GJ ha−1 yielded energy productivity of 0.231 kg MJ−1. The net energy gain (102.7 GJ ha−1) accomplished with an energy ratio of 5.6 indicates that super seeder technology was energy-efficient. Direct and indirect energy share ∼53.2 and 46.8%, whilst renewable and non-renewable energy comprised ∼24.8 and 75.2% of EI, respectively. Fertilizer-N emerged as the major energy input (∼44.7% of EI), followed by irrigation water (∼17.4%) and electricity (15.1%). The DEA based benchmarking elucidated 23 DMUs (∼51.1% of total studied) as efficient, whilst others inefficient. An average technical efficiency of 0.89 illustrates ∼11% EI saving possibilities by the adoption of best management practices. These results underpin the overwhelming significance of efficient fertilizer-N, irrigation water and electricity for reduced energy footprints in north-western India.

Suggested Citation

  • Singh, Pritpal & Singh, Gurdeep & Gupta, Alok & Sodhi, Gurjinder Pal Singh, 2023. "Data envelopment analysis based energy optimization for improving energy efficiency in wheat established following rice residue management in rice-wheat cropping system," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223020091
    DOI: 10.1016/j.energy.2023.128615
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223020091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128615?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Mousavi Avval, Seyed Hashem & Rafiee, Hamed, 2011. "Energy efficiency improvement and input cost saving in kiwifruit production using Data Envelopment Analysis approach," Renewable Energy, Elsevier, vol. 36(9), pages 2573-2579.
    2. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Applying DEA optimization approach for energy auditing in wheat cultivation under rice-wheat and cotton-wheat cropping systems in north-western India," Energy, Elsevier, vol. 181(C), pages 18-28.
    3. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S. & Sharma, Sandeep, 2021. "Energy optimization in wheat establishment following rice residue management with Happy Seeder technology for reduced carbon footprints in north-western India," Energy, Elsevier, vol. 230(C).
    4. Pishgar-Komleh, S.H. & Sefeedpari, P. & Rafiee, S., 2011. "Energy and economic analysis of rice production under different farm levels in Guilan province of Iran," Energy, Elsevier, vol. 36(10), pages 5824-5831.
    5. Emrouznejad, Ali & Yang, Guo-liang, 2018. "A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 4-8.
    6. Nabavi-Pelesaraei, Ashkan & Hosseinzadeh-Bandbafha, Homa & Qasemi-Kordkheili, Peyman & Kouchaki-Penchah, Hamed & Riahi-Dorcheh, Farshid, 2016. "Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production," Energy, Elsevier, vol. 103(C), pages 672-678.
    7. Mani, Indra & Kumar, Pradeep & Panwar, J.S. & Kant, Kamal, 2007. "Variation in energy consumption in production of wheat–maize with varying altitudes in hilly regions of Himachal Pradesh, India," Energy, Elsevier, vol. 32(12), pages 2336-2339.
    8. Jianguo Li & Wenhui Yang & Yi Wang & Qiang Li & Lili Liu & Zhongqi Zhang, 2018. "Carbon Footprint and Driving Forces of Saline Agriculture in Coastally Reclaimed Areas of Eastern China: A Survey of Four Staple Crops," Sustainability, MDPI, vol. 10(4), pages 1-16, March.
    9. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    10. Taghavifar, Hamid & Mardani, Aref, 2015. "Energy consumption analysis of wheat production in West Azarbayjan utilizing life cycle assessment (LCA)," Renewable Energy, Elsevier, vol. 74(C), pages 208-213.
    11. Khoshnevisan, Benyamin & Shariati, Hanifreza Motamed & Rafiee, Shahin & Mousazadeh, Hossein, 2014. "Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 316-324.
    12. E.T. Seyoum & G.E. Battese & E.M. Fleming, 1998. "Technical efficiency and productivity of maize producers in eastern Ethiopia: a study of farmers within and outside the Sasakawa‐Global 2000 project," Agricultural Economics, International Association of Agricultural Economists, vol. 19(3), pages 341-348, December.
    13. Mangi Lal Jat & Debashis Chakraborty & Jagdish Kumar Ladha & Dharamvir Singh Rana & Mahesh Kumar Gathala & Andrew McDonald & Bruno Gerard, 2020. "Conservation agriculture for sustainable intensification in South Asia," Nature Sustainability, Nature, vol. 3(4), pages 336-343, April.
    14. Himanshu Pathak & Yash S. Saharawat & Mahesh Gathala & Jagdish K. Ladha, 2011. "Impact of resource‐conserving technologies on productivity and greenhouse gas emissions in the rice‐wheat system," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 1(3), pages 261-277, September.
    15. Abdul Wadud & Ben White, 2000. "Farm household efficiency in Bangladesh: a comparison of stochastic frontier and DEA methods," Applied Economics, Taylor & Francis Journals, vol. 32(13), pages 1665-1673.
    16. Seyoum, E. T. & Battese, G. E. & Fleming, E. M., 1998. "Technical efficiency and productivity of maize producers in eastern Ethiopia: a study of farmers within and outside the Sasakawa-Global 2000 project," Agricultural Economics, Blackwell, vol. 19(3), pages 341-348, December.
    17. Nemecek, Thomas & Huguenin-Elie, Olivier & Dubois, David & Gaillard, Gérard & Schaller, Britta & Chervet, Andreas, 2011. "Life cycle assessment of Swiss farming systems: II. Extensive and intensive production," Agricultural Systems, Elsevier, vol. 104(3), pages 233-245, March.
    18. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.
    19. Sobia Asghar & Nophea Sasaki & Damien Jourdain & Takuji W. Tsusaka, 2018. "Levels of Technical, Allocative, and Groundwater Use Efficiency and the Factors Affecting the Allocative Efficiency of Wheat Farmers in Pakistan," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    20. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    21. Safa, M. & Samarasinghe, S. & Mohssen, M., 2010. "Determination of fuel consumption and indirect factors affecting it in wheat production in Canterbury, New Zealand," Energy, Elsevier, vol. 35(12), pages 5400-5405.
    22. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Mohammadi, Ali, 2011. "Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis," Energy, Elsevier, vol. 36(2), pages 909-916.
    23. Esengun, Kemal & Erdal, Gülistan & Gündüz, Orhan & Erdal, Hilmi, 2007. "An economic analysis and energy use in stake-tomato production in Tokat province of Turkey," Renewable Energy, Elsevier, vol. 32(11), pages 1873-1881.
    24. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2020. "Energy and carbon footprints of wheat establishment following different rice residue management strategies vis-à-vis conventional tillage coupled with rice residue burning in north-western India," Energy, Elsevier, vol. 200(C).
    25. Ramedani, Z. & Rafiee, S. & Heidari, M.D., 2011. "An investigation on energy consumption and sensitivity analysis of soybean production farms," Energy, Elsevier, vol. 36(11), pages 6340-6344.
    26. Mousavi-Avval, Seyed Hashem & Rafiee, Shahin & Jafari, Ali & Mohammadi, Ali, 2011. "Optimization of energy consumption for soybean production using Data Envelopment Analysis (DEA) approach," Applied Energy, Elsevier, vol. 88(11), pages 3765-3772.
    27. Rahman, Sanzidur & Hasan, M. Kamrul, 2014. "Energy productivity and efficiency of wheat farming in Bangladesh," Energy, Elsevier, vol. 66(C), pages 107-114.
    28. Soltani, Afshin & Rajabi, M.H. & Zeinali, E. & Soltani, Elias, 2013. "Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran," Energy, Elsevier, vol. 50(C), pages 54-61.
    29. Kirtti Ranjan Paltasingh & Phanindra Goyari, 2018. "Impact of farmer education on farm productivity under varying technologies: case of paddy growers in India," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 6(1), pages 1-19, December.
    30. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    31. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    32. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    2. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S. & Sharma, Sandeep, 2021. "Energy optimization in wheat establishment following rice residue management with Happy Seeder technology for reduced carbon footprints in north-western India," Energy, Elsevier, vol. 230(C).
    3. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    4. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Applying DEA optimization approach for energy auditing in wheat cultivation under rice-wheat and cotton-wheat cropping systems in north-western India," Energy, Elsevier, vol. 181(C), pages 18-28.
    5. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    6. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    7. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    8. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production," Energy, Elsevier, vol. 58(C), pages 588-593.
    9. Kazemi, Hossein & Bourkheili, Saeid Hassanpour & Kamkar, Behnam & Soltani, Afshin & Gharanjic, Kambiz & Nazari, Noor Mohammad, 2016. "Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)," Energy, Elsevier, vol. 116(P1), pages 694-700.
    10. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim, 2021. "Investigation of Energy Consumption and Associated CO 2 Emissions for Wheat–Rice Crop Rotation Farming," Energies, MDPI, vol. 14(16), pages 1-18, August.
    11. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach," Energy, Elsevier, vol. 55(C), pages 676-682.
    12. Anirban Nandy & Piyush Kumar Singh & Alok Kumar Singh, 2021. "Systematic Review and Meta- regression Analysis of Technical Efficiency of Agricultural Production Systems," Global Business Review, International Management Institute, vol. 22(2), pages 396-421, April.
    13. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Narges Banaeian & Muhammad Usman & Sobhy M. Ibrahim & Muhammad U. B. U. Butt & Muhammad Waseem & Imran Ali & Aamir Shakoor & Zahid M. Khan, 2020. "Investigation of Input and Output Energy for Wheat Production: A Comprehensive Study for Tehsil Mailsi (Pakistan)," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    14. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    15. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    16. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    17. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    18. Houshyar, Ehsan & Grundmann, Philipp, 2017. "Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran," Energy, Elsevier, vol. 122(C), pages 11-24.
    19. Hossein Kazemi Author- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Iran, 2016. "Energy Balance in Modern Agroecosystems; Why and How?," Agricultural Research & Technology: Open Access Journal, Juniper Publishers Inc., vol. 1(5), pages 101-104, June.
    20. Kazemi, Hossein & Kamkar, Behnam & Lakzaei, Somayeh & Badsar, Meysam & Shahbyki, Malihe, 2015. "Energy flow analysis for rice production in different geographical regions of Iran," Energy, Elsevier, vol. 84(C), pages 390-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223020091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.