IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v104y2011i3p233-245.html
   My bibliography  Save this article

Life cycle assessment of Swiss farming systems: II. Extensive and intensive production

Author

Listed:
  • Nemecek, Thomas
  • Huguenin-Elie, Olivier
  • Dubois, David
  • Gaillard, Gérard
  • Schaller, Britta
  • Chervet, Andreas

Abstract

Extensive or low-input farming is considered a way of remedying many problems associated with intensive farming practices. But do extensive farming systems really result in a clear reduction in environmental impacts, especially if their lower productivity is taken into account? This question is studied for Swiss arable cropping and forage production systems in a comprehensive life cycle assessment (LCA) study. Three long-term experiments (DOC experiment comparing bio-dynamic, bio-organic and conventional farming, the "Burgrain" experiment including integrated intensive, integrated extensive and organic systems and the "Oberacker" experiment with conventional ploughing and no-till soil cultivation, are considered in the LCA study. Furthermore, model systems for arable crops and forage production for feeding livestock are investigated by using the Swiss Agricultural Life Cycle Assessment method (SALCA). The analysis covers an overall extensification of cropping systems and forage production on the one hand and a partial extensification of fertiliser use, plant protection and soil cultivation on the other. The overall extensification of an intensively managed system reduced environmental impacts in general, both per area unit and per product unit. In arable cropping systems medium production intensity gave the best results for the environment, and the intensity should not fall below the environmental optimum in order to avoid a deterioration of eco-efficiency. In grassland systems, on the contrary, a combination of both intensively and extensively managed plots was preferable to medium intensity practices on the whole area. The differences in yield, production intensity and environmental impact were much more pronounced in grassland than in arable cropping systems. Partial extensification of a farming system should be conceived in the context of the whole system in order to be successful. For example, the extensification solely of fertiliser use and soil cultivation resulted in a general improvement in the environmental performance of the farming system, whereas a reduction in plant protection intensity by banning certain pesticide categories reduced negative impacts on ecotoxicity and biodiversity only, while increasing other burdens such as global warming, ozone formation, eutrophication and acidification per product unit. The replacement of mineral fertilisers by farmyard manure as a special form of extensification reduced resource use and improved soil quality, while slightly increasing nutrient losses. These results show that a considerable environmental improvement potential exists in Swiss farming systems and that a detailed eco-efficiency analysis could help to target a further reduction in their environmental impacts.

Suggested Citation

  • Nemecek, Thomas & Huguenin-Elie, Olivier & Dubois, David & Gaillard, Gérard & Schaller, Britta & Chervet, Andreas, 2011. "Life cycle assessment of Swiss farming systems: II. Extensive and intensive production," Agricultural Systems, Elsevier, vol. 104(3), pages 233-245, March.
  • Handle: RePEc:eee:agisys:v:104:y:2011:i:3:p:233-245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(10)00139-3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mouron, Patrik & Scholz, Roland W. & Nemecek, Thomas & Weber, Olaf, 2006. "Life cycle management on Swiss fruit farms: Relating environmental and income indicators for apple-growing," Ecological Economics, Elsevier, vol. 58(3), pages 561-578, June.
    2. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    3. Viglizzo, E. F. & Roberto, Z. E., 1998. "On trade-offs in low-input agroecosystems," Agricultural Systems, Elsevier, pages 253-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, pages 1-8.
    2. Forte, Annachiara & Zucaro, Amalia & De Vico, Gionata & Fierro, Angelo, 2016. "Carbon footprint of heliciculture: A case study from an Italian experimental farm," Agricultural Systems, Elsevier, pages 99-111.
    3. repec:eee:agisys:v:157:y:2017:i:c:p:39-50 is not listed on IDEAS
    4. repec:eee:agisys:v:156:y:2017:i:c:p:1-12 is not listed on IDEAS
    5. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    6. repec:eee:agisys:v:157:y:2017:i:c:p:118-128 is not listed on IDEAS
    7. Kazemi, Hossein & Bourkheili, Saeid Hassanpour & Kamkar, Behnam & Soltani, Afshin & Gharanjic, Kambiz & Nazari, Noor Mohammad, 2016. "Estimation of greenhouse gas (GHG) emission and energy use efficiency (EUE) analysis in rainfed canola production (case study: Golestan province, Iran)," Energy, Elsevier, vol. 116(P1), pages 694-700.
    8. Njakou Djomo, S. & Ac, A. & Zenone, T. & De Groote, T. & Bergante, S. & Facciotto, G. & Sixto, H. & Ciria Ciria, P. & Weger, J. & Ceulemans, R., 2015. "Energy performances of intensive and extensive short rotation cropping systems for woody biomass production in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 845-854.
    9. Houshyar, Ehsan & Grundmann, Philipp, 2017. "Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran," Energy, Elsevier, vol. 122(C), pages 11-24.
    10. Taghavifar, Hamid & Mardani, Aref, 2015. "Energy consumption analysis of wheat production in West Azarbayjan utilizing life cycle assessment (LCA)," Renewable Energy, Elsevier, vol. 74(C), pages 208-213.
    11. Niero, Monia & Ingvordsen, Cathrine H. & Peltonen-Sainio, Pirjo & Jalli, Marja & Lyngkjær, Michael F. & Hauschild, Michael Z. & Jørgensen, Rikke B., 2015. "Eco-efficient production of spring barley in a changed climate: A Life Cycle Assessment including primary data from future climate scenarios," Agricultural Systems, Elsevier, pages 46-60.
    12. Tendall, Danielle M. & Gaillard, Gérard, 2015. "Environmental consequences of adaptation to climate change in Swiss agriculture: An analysis at farm level," Agricultural Systems, Elsevier, pages 40-51.
    13. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    14. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    15. Rótolo, G.C. & Montico, S. & Francis, C.A. & Ulgiati, S., 2015. "How land allocation and technology innovation affect the sustainability of agriculture in Argentina Pampas: An expanded life cycle analysis," Agricultural Systems, Elsevier, pages 79-93.
    16. El Chami, D. & Daccache, A., 2015. "Assessing sustainability of winter wheat production under climate change scenarios in a humid climate — An integrated modelling framework," Agricultural Systems, Elsevier, pages 19-25.
    17. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach," Energy, Elsevier, vol. 55(C), pages 676-682.
    18. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2013. "Miscanthus production and processing in Ireland: An analysis of energy requirements and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 412-420.
    19. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Applying data envelopment analysis approach to improve energy efficiency and reduce GHG (greenhouse gas) emission of wheat production," Energy, Elsevier, vol. 58(C), pages 588-593.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:104:y:2011:i:3:p:233-245. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/agsy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.