IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i12p5400-5405.html
   My bibliography  Save this article

Determination of fuel consumption and indirect factors affecting it in wheat production in Canterbury, New Zealand

Author

Listed:
  • Safa, M.
  • Samarasinghe, S.
  • Mohssen, M.

Abstract

Since last century, modern agriculture has depended on fossil fuels. New Zealand is one of the three countries with the highest energy input per unit (in agriculture) in the world. Furthermore, in terms of shipping, the influence of increasing fuel costs in the world is greater on New Zealand farming than in other countries. This study examined fuel consumption in wheat production in New Zealand (Canterbury area). Fuel consumption in wheat production was analyzed based on the operational fuel consumption by field machinery. Total fuel consumption in wheat production was estimated at 65.3l/ha. On average fuel consumption in tillage and harvesting are more than in other operations with 29.6l/ha (45%) and 18l/ha (28%), respectively. The fuel consumption in wheat production in irrigated and dry land farming was estimated at 64.9 and 66l/ha, respectively.

Suggested Citation

  • Safa, M. & Samarasinghe, S. & Mohssen, M., 2010. "Determination of fuel consumption and indirect factors affecting it in wheat production in Canterbury, New Zealand," Energy, Elsevier, vol. 35(12), pages 5400-5405.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5400-5405
    DOI: 10.1016/j.energy.2010.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210003798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tzilivakis, J. & Warner, D.J. & May, M. & Lewis, K.A. & Jaggard, K., 2005. "An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK," Agricultural Systems, Elsevier, vol. 85(2), pages 101-119, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van linden, Veerle & Herman, Lieve, 2014. "A fuel consumption model for off-road use of mobile machinery in agriculture," Energy, Elsevier, vol. 77(C), pages 880-889.
    2. Yuan, Shen & Peng, Shaobing, 2017. "Trends in the economic return on energy use and energy use efficiency in China's crop production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 836-844.
    3. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Narges Banaeian & Muhammad Usman & Sobhy M. Ibrahim & Muhammad U. B. U. Butt & Muhammad Waseem & Imran Ali & Aamir Shakoor & Zahid M. Khan, 2020. "Investigation of Input and Output Energy for Wheat Production: A Comprehensive Study for Tehsil Mailsi (Pakistan)," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    4. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S. & Sharma, Sandeep, 2021. "Energy optimization in wheat establishment following rice residue management with Happy Seeder technology for reduced carbon footprints in north-western India," Energy, Elsevier, vol. 230(C).
    5. Safa, Majeed & Samarasinghe, Sandhya, 2013. "Modelling fuel consumption in wheat production using artificial neural networks," Energy, Elsevier, vol. 49(C), pages 337-343.
    6. Soltani, Afshin & Rajabi, M.H. & Zeinali, E. & Soltani, Elias, 2013. "Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran," Energy, Elsevier, vol. 50(C), pages 54-61.
    7. Elzaki, Raga M. & Elrasheed, Mutasim.M.M. & Elmulthum, Nagat A., 2022. "Optimal crop combination under soaring oil and energy prices in the kingdom of Saudi Arabia," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    8. Singh, Pritpal & Singh, Gurdeep & Gupta, Alok & Sodhi, Gurjinder Pal Singh, 2023. "Data envelopment analysis based energy optimization for improving energy efficiency in wheat established following rice residue management in rice-wheat cropping system," Energy, Elsevier, vol. 284(C).
    9. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    10. Alluvione, Francesco & Moretti, Barbara & Sacco, Dario & Grignani, Carlo, 2011. "EUE (energy use efficiency) of cropping systems for a sustainable agriculture," Energy, Elsevier, vol. 36(7), pages 4468-4481.
    11. Muazu, A. & Yahya, A. & Ishak, W.I.W. & Khairunniza-Bejo, S., 2015. "Energy audit for sustainable wetland paddy cultivation in Malaysia," Energy, Elsevier, vol. 87(C), pages 182-191.
    12. Alhajj Ali, Salem & Tedone, Luigi & De Mastro, Giuseppe, 2013. "A comparison of the energy consumption of rainfed durum wheat under different management scenarios in southern Italy," Energy, Elsevier, vol. 61(C), pages 308-318.
    13. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2020. "Energy and carbon footprints of wheat establishment following different rice residue management strategies vis-à-vis conventional tillage coupled with rice residue burning in north-western India," Energy, Elsevier, vol. 200(C).
    14. Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
    15. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    16. Houshyar, Ehsan & Grundmann, Philipp, 2017. "Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran," Energy, Elsevier, vol. 122(C), pages 11-24.
    17. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim, 2021. "Investigation of Energy Consumption and Associated CO 2 Emissions for Wheat–Rice Crop Rotation Farming," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Šarauskis, Egidijus & Masilionytė, Laura & Juknevičius, Darius & Buragienė, Sidona & Kriaučiūnienė, Zita, 2019. "Energy use efficiency, GHG emissions, and cost-effectiveness of organic and sustainable fertilisation," Energy, Elsevier, vol. 172(C), pages 1151-1160.
    2. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    3. Šarauskis, Egidijus & Romaneckas, Kęstutis & Jasinskas, Algirdas & Kimbirauskienė, Rasa & Naujokienė, Vilma, 2020. "Improving energy efficiency and environmental mitigation through tillage management in faba bean production," Energy, Elsevier, vol. 209(C).
    4. Władysław Szempliński & Bogdan Dubis & Krzysztof Michał Lachutta & Krzysztof Józef Jankowski, 2021. "Energy Optimization in Different Production Technologies of Winter Triticale Grain," Energies, MDPI, vol. 14(4), pages 1-12, February.
    5. Ozkan, Burhan & Ceylan, R. Figen & Kizilay, Hatice, 2011. "Comparison of energy inputs in glasshouse double crop (fall and summer crops) tomato production," Renewable Energy, Elsevier, vol. 36(5), pages 1639-1644.
    6. Olfa Gharsallah & Claudio Gandolfi & Arianna Facchi, 2021. "Methodologies for the Sustainability Assessment of Agricultural Production Systems, with a Focus on Rice: A Review," Sustainability, MDPI, vol. 13(19), pages 1-16, October.
    7. Kumar, Rohit & Bhardwaj, Arvind & Singh, Lakhwinder Pal & Singh, Gurraj, 2023. "Quantifying ecological impacts: A comparative life cycle assessment of conventional and organic potato cultivation," Ecological Modelling, Elsevier, vol. 486(C).
    8. Żyłowski, Tomasz & Kozyra, Jerzy, 2020. "Environmental Efficiency Of Root Crop Cultivation," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2020(3).
    9. Hu, Ming-Che & Chen, Yu-Hui & Huang, Li-Chun, 2014. "A sustainable vegetable supply chain using plant factories in Taiwanese markets: A Nash–Cournot model," International Journal of Production Economics, Elsevier, vol. 152(C), pages 49-56.
    10. Wood, Richard & Lenzen, Manfred & Dey, Christopher & Lundie, Sven, 2006. "A comparative study of some environmental impacts of conventional and organic farming in Australia," Agricultural Systems, Elsevier, vol. 89(2-3), pages 324-348, September.
    11. Hossein Kazemi Author- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Iran, 2016. "Energy Balance in Modern Agroecosystems; Why and How?," Agricultural Research & Technology: Open Access Journal, Juniper Publishers Inc., vol. 1(5), pages 101-104, June.
    12. Tek Maraseni & Guangnan Chen & Thomas Banhazi & Jochen Bundschuh & Talal Yusaf, 2015. "An Assessment of Direct on-Farm Energy Use for High Value Grain Crops Grown under Different Farming Practices in Australia," Energies, MDPI, vol. 8(11), pages 1-14, November.
    13. Mardani, Aref & Taghavifar, Hamid, 2016. "An overview on energy inputs and environmental emissions of grape production in West Azerbayjan of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 918-924.
    14. Nikkhah, Amin & Royan, Mahsa & Khojastehpour, Mehdi & Bacenetti, Jacopo, 2017. "Environmental impacts modeling of Iranian peach production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 677-682.
    15. Soltani, Afshin & Rajabi, M.H. & Zeinali, E. & Soltani, Elias, 2013. "Energy inputs and greenhouse gases emissions in wheat production in Gorgan, Iran," Energy, Elsevier, vol. 50(C), pages 54-61.
    16. Beheshti Tabar, Iman & Keyhani, Alireza & Rafiee, Shaheen, 2010. "Energy balance in Iran's agronomy (1990-2006)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 849-855, February.
    17. Radmehr, Riza & Ghorbani, Mohammad & Ziaei, Ali Naghi, 2021. "Quantifying and managing the water-energy-food nexus in dry regions food insecurity: New methods and evidence," Agricultural Water Management, Elsevier, vol. 245(C).
    18. Hourieh Masaeli & Alireza Gohari & Marzieh Hasanzadeh Saray & Ali Torabi Haghighi, 2023. "Developing a new water–energy–food‐greenhouse gases nexus tool for sustainable agricultural landscape management," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 877-892, April.
    19. Šarauskis, Egidijus & Buragienė, Sidona & Masilionytė, Laura & Romaneckas, Kęstutis & Avižienytė, Dovile & Sakalauskas, Antanas, 2014. "Energy balance, costs and CO2 analysis of tillage technologies in maize cultivation," Energy, Elsevier, vol. 69(C), pages 227-235.
    20. Elhami, Behzad & Ghasemi Nejad Raini, Mahmoud & Soheili-Fard, Farshad, 2019. "Energy and environmental indices through life cycle assessment of raisin production: A case study (Kohgiluyeh and Boyer-Ahmad Province, Iran)," Renewable Energy, Elsevier, vol. 141(C), pages 507-515.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:12:p:5400-5405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.