IDEAS home Printed from https://ideas.repec.org/p/sgc/wpaper/164.html
   My bibliography  Save this paper

Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture

Author

Listed:
  • Uwe A. Schneider
  • Pete Smith

    (Research unit Sustainability and Global Change)

Abstract

Energy efficiency and greenhouse gas emissions are closely linked. This paper reviews agricultural options to reduce energy intensities and their impacts, discusses important accounting issues related to system boundaries, land scarcity, and measurement units, and compares agricultural energy intensities and improvement potentials on an international level. Agricultural development in the past decades, while increasing yields, led to lower average energy efficiencies between the sixties and mid eighties. In the last two decades, energy intensities in developed countries increased, however, with little impact on greenhouse gas emissions. Efficiency differences across countries suggest a maximum improvement potential of 500 million tons of CO2 annually.

Suggested Citation

  • Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
  • Handle: RePEc:sgc:wpaper:164
    as

    Download full text from publisher

    File URL: http://www.fnu.zmaw.de/fileadmin/fnu-files/publication/working-papers/fnu164_schneider_smith_ee.pdf
    File Function: First version, 2008
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nkakini, S.O. & Ayotamuno, M.J. & Ogaji, S.O.T. & Probert, S.D., 2006. "Farm mechanization leading to more effective energy-utilizations for cassava and yam cultivations in Rivers State, Nigeria," Applied Energy, Elsevier, vol. 83(12), pages 1317-1325, December.
    2. Alcantara, Vicent & Roca, Jordi, 1995. "Energy and CO2 emissions in Spain : Methodology of analysis and some results for 1980-1990," Energy Economics, Elsevier, vol. 17(3), pages 221-230, July.
    3. S De Cara & P-A Jayet, 2000. "Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 27(3), pages 281-303, September.
    4. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    5. Raitzer, David A. & Kelley, Timothy G., 2008. "Benefit-cost meta-analysis of investment in the International Agricultural Research Centers of the CGIAR," Agricultural Systems, Elsevier, vol. 96(1-3), pages 108-123, March.
    6. Edwards, Brian K. & Howitt, Richard E. & Flaim, Silvio J., 1996. "Fuel, crop, and water substitution in irrigated agriculture," Resource and Energy Economics, Elsevier, vol. 18(3), pages 311-331, October.
    7. Sakellariou-Makrantonaki, M. & Papalexis, D. & Nakos, N. & Kalavrouziotis, I.K., 2007. "Effect of modern irrigation methods on growth and energy production of sweet sorghum (var. Keller) on a dry year in Central Greece," Agricultural Water Management, Elsevier, vol. 90(3), pages 181-189, June.
    8. Uwe Schneider & Bruce McCarl, 2003. "Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 291-312, April.
    9. Tzilivakis, J. & Warner, D.J. & May, M. & Lewis, K.A. & Jaggard, K., 2005. "An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK," Agricultural Systems, Elsevier, vol. 85(2), pages 101-119, August.
    10. Uwe A. Schneider & Bruce A. McCarl, 2006. "Appraising agricultural greenhouse gas mitigation potentials: effects of alternative assumptions," Agricultural Economics, International Association of Agricultural Economists, vol. 35(3), pages 277-287, November.
    11. Traxler, Greg & Byerlee, Derek, 2001. "Linking technical change to research effort: an examination of aggregation and spillovers effects," Agricultural Economics, Blackwell, vol. 24(3), pages 235-246, March.
    12. Annette Cowie & Uwe A. Schneider & Luca Montanarella, 2007. "Potential synergies between existing multilateral environmental agreements in the implementation of Land Use, Land Use Change and Forestry activities," Working Papers FNU-123, Research unit Sustainability and Global Change, Hamburg University, revised Jan 2007.
    13. Ramsden, S. & Gibbons, J. & Wilson, P., 1999. "Impacts of changing relative prices on farm level dairy production in the UK," Agricultural Systems, Elsevier, vol. 62(3), pages 201-215, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    2. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    3. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    5. Uwe A. Schneider & Michael Obersteiner & Erwin Schmid & Bruce A. McCarl, 2007. "Agricultural adaptation to climate policies under technical change," Working Papers FNU-133, Research unit Sustainability and Global Change, Hamburg University, revised Jan 2008.
    6. Szulczyk, Kenneth R. & McCarl, Bruce A. & Cornforth, Gerald, 2010. "Market penetration of ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 394-403, January.
    7. Saraly Andrade de Sá & Charles Palmer & Stefanie Engel, 2012. "Ethanol Production, Food and Forests," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(1), pages 1-21, January.
    8. Laure Bamière & Pierre‐Alain Jayet & Salomé Kahindo & Elsa Martin, 2021. "Carbon sequestration in French agricultural soils: A spatial economic evaluation," Agricultural Economics, International Association of Agricultural Economists, vol. 52(2), pages 301-316, March.
    9. Lengers, Bernd & Britz, Wolfgang & Holm-Müller, Karin, 2013. "Trade-off of feasibility against accuracy and cost efficiency in choosing indicators for the abatement of GHG-emissions in dairy farming," Discussion Papers 162877, University of Bonn, Institute for Food and Resource Economics.
    10. Vermont, Bruno & De Cara, Stéphane, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Ecological Economics, Elsevier, vol. 69(7), pages 1373-1386, May.
    11. de Cara, Stephane & Houze, Martin & Jayet, Pierre-Alain, 2004. "Greenhouse gas emissions from agriculture in the EU: A spatial assessment of sources and abatement costs," 2004 Conference (48th), February 11-13, 2004, Melbourne, Australia 58401, Australian Agricultural and Resource Economics Society.
    12. Kung, Chih-Chun & Zhang, Liguo & Kong, Fanbin, 2016. "How government subsidy leads to sustainable bioenergy development," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 275-284.
    13. Henseler, Martin & Dechow, Rene, 2014. "Simulation of regional nitrous oxide emissions from German agricultural mineral soils: A linkage between an agro-economic model and an empirical emission model," Agricultural Systems, Elsevier, vol. 124(C), pages 70-82.
    14. Meng-Shiuh Chang & Chih-Chun Kung, 2018. "The greenhouse gas impact of bioenergy in developing economies: Evidence from Taiwan," Energy & Environment, , vol. 29(3), pages 315-332, May.
    15. Grant J. Allan, 2015. "The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 615-643, April.
    16. Michael Hartmann & Werner Hediger & Simon Peter, 2008. "How Much Should Swiss Farmers Contribute to Greenhouse Gas Reduction? A Meta-Analytical Approach," Journal of Socio-Economics in Agriculture (Until 2015: Yearbook of Socioeconomics in Agriculture), Swiss Society for Agricultural Economics and Rural Sociology, vol. 1(1), pages 183-218.
    17. Chih-Chun KUNG, 2018. "A dynamic framework of sustainable development in agriculture and bioenergy," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 64(10), pages 445-455.
    18. Kamel Elouhichi & Maria Espinosa Goded & Pavel Ciaian & Angel Perni Llorente & Bouda Vosough Ahmadi & Liesbeth Colen & Sergio Gomez Y Paloma, 2018. "The EU-Wide Individual Farm Model for Common Agricultural Policy Analysis (IFM-CAP v.1): Economic Impacts of CAP Greening," JRC Research Reports JRC108693, Joint Research Centre.
    19. Garnache, Cloe & Merel, Pierre R. & Lee, Juhwan & Six, Johan, 2014. "Markets for Agricultural Greenhouse Gas Offsets: The Role of Policy Design on Abatement Efficiency," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170718, Agricultural and Applied Economics Association.
    20. Dumortier, Jerome, 2014. "Impact of different bioenergy crop yield estimates on the cellulosic ethanol feedstock mix," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 171168, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Energy intensity; Agriculture; Greenhouse gas emissions; Mitigation potential; Fertilizer efficiency;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgc:wpaper:164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Uwe Schneider (email available below). General contact details of provider: https://edirc.repec.org/data/zmhamde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.