IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01172939.html
   My bibliography  Save this paper

How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis

Author

Listed:
  • Bruno Vermont

    (ECO-PUB - Economie Publique - INRA - Institut National de la Recherche Agronomique - AgroParisTech)

  • Stephane de Cara

    (ECO-PUB - Economie Publique - INRA - Institut National de la Recherche Agronomique - AgroParisTech)

Abstract

This text reviews the assessments of marginal abatement costs of methane and nitrous oxide emissions from agriculture. We use agricultural emissions and the corresponding prices collected from 21 studies that have assessed abatement potentials and costs using various modeling approaches and assumptions. We first highlight the implications of the modeling approach for marginal abatement costs. Harmonized abatement rates for three emission prices (10, 20 and 50 €2005/tCO2eq) are regressed on variables that reflect various modeling assumptions and study characteristics. In a second step, the emission price is introduced as an explanatory variable. When controlling for a few key characteristics of the studies, the models explain an important share of the observed variability in abatement rates. The type of modeling approach is found to have a significant effect. In particular, we find that equilibrium models lead to higher abatement rates for a given price. The flexibility in nitrogen use and its effect on crop yields also plays a significant role in lowering marginal abatement costs. The results of the second step indicate that the price elasticity of the abatement rate is about 0.6. This estimate is found to be robust to several specifications and consistent with previous assessments covering other economic sectors.

Suggested Citation

  • Bruno Vermont & Stephane de Cara, 2010. "How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?: A meta-analysis," Post-Print hal-01172939, HAL.
  • Handle: RePEc:hal:journl:hal-01172939
    DOI: 10.1016/j.ecolecon.2010.02.020
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-01172939
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pathak, H. & Wassmann, R., 2007. "Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients," Agricultural Systems, Elsevier, vol. 94(3), pages 807-825, June.
    2. Hertel, Thomas & Lee, Huey-Lin & Rose, Steven & Sohngen, Brent, 2008. "Modeling Land-use Related Greenhouse Gas Sources and Sinks and their Mitigation Potential," GTAP Working Papers 2605, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    3. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    4. Stéphane Cara & Martin Houzé & Pierre-Alain Jayet, 2005. "Methane and Nitrous Oxide Emissions from Agriculture in the EU: A Spatial Assessment of Sources and Abatement Costs," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 32(4), pages 551-583, December.
    5. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    6. T. D. Stanley & Stephen B. Jarrell, 2005. "Meta‐Regression Analysis: A Quantitative Method of Literature Surveys," Journal of Economic Surveys, Wiley Blackwell, vol. 19(3), pages 299-308, July.
    7. Schneider, Uwe A. & McCarl, Bruce A. & Schmid, Erwin, 2007. "Agricultural sector analysis on greenhouse gas mitigation in US agriculture and forestry," Agricultural Systems, Elsevier, vol. 94(2), pages 128-140, May.
    8. Breen, James P., 2008. "Simulating a Market for Tradable Greenhouse Gas Emissions Permits amongst Irish Farmers," 82nd Annual Conference, March 31 - April 2, 2008, Royal Agricultural College, Cirencester, UK 36770, Agricultural Economics Society.
    9. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    10. Uwe Schneider & Bruce McCarl, 2003. "Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 24(4), pages 291-312, April.
    11. Golub, Alla & Hertel, Thomas & Lee, Huey-Lin & Rose, Steven & Sohngen, Brent, 2009. "The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry," Resource and Energy Economics, Elsevier, vol. 31(4), pages 299-319, November.
    12. Uwe A. Schneider & Bruce A. McCarl, 2006. "Appraising agricultural greenhouse gas mitigation potentials: effects of alternative assumptions," Agricultural Economics, International Association of Agricultural Economists, vol. 35(3), pages 277-287, November.
    13. Smith, Elwin G. & Upadhyay, Bharat Mani, 2005. "Greenhouse Gas Mitigation on Diversified Farms," Annual Meeting, 2005, July 6-8, San Francisco, CA 34165, Canadian Agricultural Economics Society.
    14. van Kooten, G. Cornelis & Laaksonen-Craig, Susanna & Wang, Yichuan, 2007. "Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression Analysis," Working Papers 37039, University of Victoria, Resource Economics and Policy.
    15. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    16. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    17. Robert H. Beach & Benjamin J. DeAngelo & Steven Rose & Changsheng Li & William Salas & Stephen J. DelGrosso, 2008. "Mitigation potential and costs for global agricultural greenhouse gas emissions-super-1," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 109-115, March.
    18. Uwe A. Schneider & Pete Smith, 2008. "Greenhouse Gas Emission Mitigation and Emission Intensities in Agriculture," Working Papers FNU-164, Research unit Sustainability and Global Change, Hamburg University, revised Jul 2008.
    19. Kuik, Onno & Brander, Luke & Tol, Richard S.J., 2009. "Marginal abatement costs of greenhouse gas emissions: A meta-analysis," Energy Policy, Elsevier, vol. 37(4), pages 1395-1403, April.
    20. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    21. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    22. Pushpam Kumar & Uwe A. Schneider, 2008. "Greenhouse gas emission mitigation through agriculture," Working Papers FNU-155, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2008.
    23. Sophie Durandeau & Benoit Gabrielle & Caroline Godard & Pierre-Alain Jayet & Christine Le Bas, 2010. "Coupling biophysical and micro-economic models to assess the effect of mitigation measures on greenhouse gas emissions from agriculture," Post-Print hal-00410001, HAL.
    24. Jon Nelson & Peter Kennedy, 2009. "The Use (and Abuse) of Meta-Analysis in Environmental and Natural Resource Economics: An Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 345-377, March.
    25. Jean-Marc Burniaux, 2000. "A Multi-Gas Assessment of the Kyoto Protocol," OECD Economics Department Working Papers 270, OECD Publishing.
    26. van 't Veld, Klaas & Plantinga, Andrew, 2005. "Carbon sequestration or abatement? The effect of rising carbon prices on the optimal portfolio of greenhouse-gas mitigation strategies," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 59-81, July.
    27. Benjamin J. DeAngelo, Francisco C. de la Chesnaye, Robert H. Beach, Allan Sommer and Brian C. Murray, 2006. "Methane and Nitrous Oxide Mitigation in Agriculture," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 89-108.
    28. G. Cornelis van Kooten & Alison Eagle & James Manley & Tara Smolak, 2004. "How Costly are Carbon Offsets? A Meta-Analysis of Forest Carbon Sinks," Working Papers 2004-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Cara, Stéphane & Jayet, Pierre-Alain, 2011. "Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement," Ecological Economics, Elsevier, vol. 70(9), pages 1680-1690, July.
    2. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    3. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    4. MacLeod, Michael & Moran, Dominic & Eory, Vera & Rees, R.M. & Barnes, Andrew & Topp, Cairistiona F.E. & Ball, Bruce & Hoad, Steve & Wall, Eileen & McVittie, Alistair & Pajot, Guillaume & Matthews, Rob, 2010. "Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK," Agricultural Systems, Elsevier, vol. 103(4), pages 198-209, May.
    5. Wang, Wen, 2015. "Intégrer l'agriculture dans les politiques d'atténuation chinoises," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/14999 edited by Perthuis, Christian de, November.
    6. Eory, Vera, 2015. "Evaluating the use of marginal abatement cost curves applied to greenhouse gas abatement in agriculture," Working Papers 199777, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    7. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    8. Garnache, Cloé & Mérel, Pierre R. & Lee, Juhwan & Six, Johan, 2017. "The social costs of second-best policies: Evidence from agricultural GHG mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 39-73.
    9. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    10. Sebri, Maamar, 2015. "Use renewables to be cleaner: Meta-analysis of the renewable energy consumption–economic growth nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 657-665.
    11. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    12. Povellato, Andrea & Bosello, Francesco & Giupponi, Carlo, 2007. "A Review of Recent Studies on Cost Effectiveness of GHG Mitigation Measures in the European Agro-Forestry Sector," Natural Resources Management Working Papers 10268, Fondazione Eni Enrico Mattei (FEEM).
    13. Miomir Jovanović & Ljiljana Kašćelan & Aleksandra Despotović & Vladimir Kašćelan, 2015. "The Impact of Agro-Economic Factors on GHG Emissions: Evidence from European Developing and Advanced Economies," Sustainability, MDPI, Open Access Journal, vol. 7(12), pages 1-21, December.
    14. Antonia Weishaupt & Felix Ekardt & Beatrice Garske & Jessica Stubenrauch & Jutta Wieding, 2020. "Land Use, Livestock, Quantity Governance, and Economic Instruments—Sustainability Beyond Big Livestock Herds and Fossil Fuels," Sustainability, MDPI, Open Access Journal, vol. 12(5), pages 1-27, March.
    15. Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.
    16. Rose, Steven K. & Ahammad, Helal & Eickhout, Bas & Fisher, Brian & Kurosawa, Atsushi & Rao, Shilpa & Riahi, Keywan & van Vuuren, Detlef P., 2012. "Land-based mitigation in climate stabilization," Energy Economics, Elsevier, vol. 34(1), pages 365-380.
    17. Henseler, Martin & Dechow, Rene, 2014. "Simulation of regional nitrous oxide emissions from German agricultural mineral soils: A linkage between an agro-economic model and an empirical emission model," Agricultural Systems, Elsevier, vol. 124(C), pages 70-82.
    18. Garnache, Cloe & Merel, Pierre R. & Lee, Juhwan & Six, Johan, 2014. "Markets for Agricultural Greenhouse Gas Offsets: The Role of Policy Design on Abatement Efficiency," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170718, Agricultural and Applied Economics Association.
    19. Coderoni, Silvia & Esposti, Roberto, 2014. "The evolution of agricultural GHG emissions in Italy and the role of the CAP A farm-level assessment," 2014 Third Congress, June 25-27, 2014, Alghero, Italy 173012, Italian Association of Agricultural and Applied Economics (AIEAA).
    20. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01172939. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.