IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i17p2083-d624147.html
   My bibliography  Save this article

Energy Crisis in Pakistan and Economic Progress: Decoupling the Impact of Coal Energy Consumption in Power and Brick Kilns

Author

Listed:
  • Abdul Rehman

    (College of Economics and Management, Henan Agricultural University, Zhengzhou 450002, China)

  • Hengyun Ma

    (College of Economics and Management, Henan Agricultural University, Zhengzhou 450002, China)

  • Magdalena Radulescu

    (Department of Finance and Economics, Faculty of Economics and Law, University of Pitesti, Str. Targu din Vale, No.1, 110040 Pitesti, Arges, Romania
    Doctoral and Post-Doctoral School, University “Lucian Blaga” Sibiu, Bd. Victoriei, No.10, 550024 Sibiu, Romania)

  • Crenguta Ileana Sinisi

    (Department of Management and Business Administration, University of Pitesti, Str. Targu din Vale, No.1, 110040 Pitesti, Arges, Romania)

  • Zahid Yousaf

    (Government College of Management Sciences, Mansehra 21300, Pakistan)

Abstract

This study aims to examine the impact of coal energy consumption on the economic progress in Pakistan by using annual time series data during 1972–2019. Three-unit root tests were employed to rectify the variables’ stationarity. The quantile regression approach with the extension of cointegration regression test was utilized to check the variables interaction with the economic progress. The outcomes of the quantile regression uncover that coal energy consumption in power sector and coal energy consumption in brick kilns have adverse influence to the economic progress, while total coal energy consumption has a productive association with the economic progress. Similarly, the findings of cointegration regression analysis uncover that via FMOLS (Fully Modified Least Squares) and DOLS (Dynamic Least Squares) that variables coal energy consumption in power sector and brick kilns have an adverse connection with the economic progress, while total coal energy consumption uncover a productive linkage to the economic progress in Pakistan. Pakistan is still facing a deep energy crisis because of the lack of energy production from cheap sources. New possible policies are required in this direction to improve the energy sector by paying more attention to the alternative energy sources to foster the economic progress.

Suggested Citation

  • Abdul Rehman & Hengyun Ma & Magdalena Radulescu & Crenguta Ileana Sinisi & Zahid Yousaf, 2021. "Energy Crisis in Pakistan and Economic Progress: Decoupling the Impact of Coal Energy Consumption in Power and Brick Kilns," Mathematics, MDPI, vol. 9(17), pages 1-15, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2083-:d:624147
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/17/2083/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/17/2083/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, Mumtaz & Azam, Muhammad, 2016. "Causal nexus between energy consumption and economic growth for high, middle and low income countries using frequency domain analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 653-678.
    2. Bhattacharya, Mita & Rafiq, Shuddhasattwa & Bhattacharya, Sankar, 2015. "The role of technology on the dynamics of coal consumption–economic growth: New evidence from China," Applied Energy, Elsevier, vol. 154(C), pages 686-695.
    3. Chen, Yulong & Wang, Zheng & Zhong, Zhangqi, 2019. "CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China," Renewable Energy, Elsevier, vol. 131(C), pages 208-216.
    4. Abbas Mardani & Dalia Streimikiene & Mehrbakhsh Nilashi & Daniel Arias Aranda & Nanthakumar Loganathan & Ahmad Jusoh, 2018. "Energy Consumption, Economic Growth, and CO 2 Emissions in G20 Countries: Application of Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 11(10), pages 1-15, October.
    5. Bloch, Harry & Rafiq, Shuddhasattwa & Salim, Ruhul, 2015. "Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution," Economic Modelling, Elsevier, vol. 44(C), pages 104-115.
    6. Esso, Loesse Jacques & Keho, Yaya, 2016. "Energy consumption, economic growth and carbon emissions: Cointegration and causality evidence from selected African countries," Energy, Elsevier, vol. 114(C), pages 492-497.
    7. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    8. Rahman, Mohammad Mafizur & Kashem, Mohammad Abul, 2017. "Carbon emissions, energy consumption and industrial growth in Bangladesh: Empirical evidence from ARDL cointegration and Granger causality analysis," Energy Policy, Elsevier, vol. 110(C), pages 600-608.
    9. Camilo Mora & Abby G. Frazier & Ryan J. Longman & Rachel S. Dacks & Maya M. Walton & Eric J. Tong & Joseph J. Sanchez & Lauren R. Kaiser & Yuko O. Stender & James M. Anderson & Christine M. Ambrosino , 2013. "The projected timing of climate departure from recent variability," Nature, Nature, vol. 502(7470), pages 183-187, October.
    10. Gozgor, Giray & Lau, Chi Keung Marco & Lu, Zhou, 2018. "Energy consumption and economic growth: New evidence from the OECD countries," Energy, Elsevier, vol. 153(C), pages 27-34.
    11. Frauke Urban & Johan Nordensvärd, 2018. "Low Carbon Energy Transitions in the Nordic Countries: Evidence from the Environmental Kuznets Curve," Energies, MDPI, vol. 11(9), pages 1-17, August.
    12. Yuan, Chaoqing & Liu, Sifeng & Xie, Naiming, 2010. "The impact on chinese economic growth and energy consumption of the Global Financial Crisis: An input–output analysis," Energy, Elsevier, vol. 35(4), pages 1805-1812.
    13. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2020. "Renewable energy consumption and economic growth nexus: Evidence from a threshold model," Energy Policy, Elsevier, vol. 139(C).
    14. Riker, David A., 2012. "International coal trade and restrictions on coal consumption," Energy Economics, Elsevier, vol. 34(4), pages 1244-1249.
    15. Rashid Latief & Lin Lefen, 2019. "Foreign Direct Investment in the Power and Energy Sector, Energy Consumption, and Economic Growth: Empirical Evidence from Pakistan," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    16. Apergis, Nicholas & Payne, James E., 2010. "Coal consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(3), pages 1353-1359, March.
    17. Ahmad, Najid & Du, Liangsheng & Lu, Jiye & Wang, Jianlin & Li, Hong-Zhou & Hashmi, Muhammad Zaffar, 2017. "Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve?," Energy, Elsevier, vol. 123(C), pages 164-172.
    18. Kang, Sang Hoon & Islam, Faridul & Kumar Tiwari, Aviral, 2019. "The dynamic relationships among CO2 emissions, renewable and non-renewable energy sources, and economic growth in India: Evidence from time-varying Bayesian VAR model," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 90-101.
    19. Zhang, Yue-Jun, 2011. "Interpreting the dynamic nexus between energy consumption and economic growth: Empirical evidence from Russia," Energy Policy, Elsevier, vol. 39(5), pages 2265-2272, May.
    20. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    21. Apergis, Nicholas & Payne, James E., 2010. "Renewable energy consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(1), pages 656-660, January.
    22. Komal, Rabia & Abbas, Faisal, 2015. "Linking financial development, economic growth and energy consumption in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 211-220.
    23. Olabanji Benjamin Awodumi Adebowale Musefiu Adeleke, 2016. "Non-Renewable Energy and Macroeconomic Efficiency of Seven Major Oil Producing Economies in Africa," Zagreb International Review of Economics and Business, Faculty of Economics and Business, University of Zagreb, vol. 19(1), pages 59-74, May.
    24. Nicholas Apergis & Dan Constantin Danuletiu, 2014. "Renewable Energy and Economic Growth: Evidence from the Sign of Panel Long-Run Causality," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 578-587.
    25. Raúl Arango-Miranda & Robert Hausler & Rabindranarth Romero-Lopez & Mathias Glaus & Sara P. Ibarra-Zavaleta, 2018. "Carbon Dioxide Emissions, Energy Consumption and Economic Growth: A Comparative Empirical Study of Selected Developed and Developing Countries. “The Role of Exergy”," Energies, MDPI, vol. 11(10), pages 1-16, October.
    26. Ozcan, Burcu & Ozturk, Ilhan, 2019. "Renewable energy consumption-economic growth nexus in emerging countries: A bootstrap panel causality test," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 30-37.
    27. Nicholas M Odhiambo, 2016. "Coal consumption and economic growth in South Africa: An empirical investigation," Energy & Environment, , vol. 27(2), pages 215-226, March.
    28. Abbasi, Kashif Raza & Shahbaz, Muhammad & Jiao, Zhilun & Tufail, Muhammad, 2021. "How energy consumption, industrial growth, urbanization, and CO2 emissions affect economic growth in Pakistan? A novel dynamic ARDL simulations approach," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongxing Tu & Wei Dai & Xu Xiao, 2022. "Study on the Environmental Efficiency of the Chinese Cement Industry Based on the Undesirable Output DEA Model," Energies, MDPI, vol. 15(9), pages 1-13, May.
    2. Hasdi Aimon & Anggi Putri Kurniadi & Sri Ulfa Sentosa & Nurhayati Abd Rahman, 2023. "Production, Consumption, Export and Carbon Emission for Coal Commodities: Cases of Indonesia and Australia," International Journal of Energy Economics and Policy, Econjournals, vol. 13(5), pages 484-492, September.
    3. Abdul Rehman & Hengyun Ma & Magdalena Radulescu & Crenguta Ileana Sinisi & Loredana Maria Paunescu & MD Shabbir Alam & Rafael Alvarado, 2021. "The Energy Mix Dilemma and Environmental Sustainability: Interaction among Greenhouse Gas Emissions, Nuclear Energy, Urban Agglomeration, and Economic Growth," Energies, MDPI, vol. 14(22), pages 1-21, November.
    4. Nada Amer Abdulhafedh Al-Kubati & Zulkefly Abdul Karim & Norlin Khalid & M. Kabir Hassan, 2022. "The Impact of Sub-Sector of Economic Activity and Financial Development on Environmental Degradation: New Evidence Using Dynamic Heterogeneous Panel," Mathematics, MDPI, vol. 10(23), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armeanu, Daniel Stefan & Joldes, Camelia Catalina & Gherghina, Stefan Cristian & Andrei, Jean Vasile, 2021. "Understanding the multidimensional linkages among renewable energy, pollution, economic growth and urbanization in contemporary economies: Quantitative assessments across different income countries’ g," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Doytch, Nadia & Narayan, Seema, 2021. "Does transitioning towards renewable energy accelerate economic growth? An analysis of sectoral growth for a dynamic panel of countries," Energy, Elsevier, vol. 235(C).
    3. Anatole Toinar Mogota & Djimoudjiel Djekonbe, 2022. "Renewable Energy and Economic Growth: The Role of Foreign Direct Investment in Sub-Saharan Africa," Economic Research Guardian, Weissberg Publishing, vol. 12(2), pages 115-128, December.
    4. Assi, Ala Fathi & Zhakanova Isiksal, Aliya & Tursoy, Turgut, 2021. "Renewable energy consumption, financial development, environmental pollution, and innovations in the ASEAN + 3 group: Evidence from (P-ARDL) model," Renewable Energy, Elsevier, vol. 165(P1), pages 689-700.
    5. Yu, Bolin & Fang, Debin & Yu, Hongwei & Zhao, Chaoyang, 2021. "Temporal-spatial determinants of renewable energy penetration in electricity production: Evidence from EU countries," Renewable Energy, Elsevier, vol. 180(C), pages 438-451.
    6. Daniel Ştefan Armeanu & Ştefan Cristian Gherghina & George Pasmangiu, 2019. "Exploring the Causal Nexus between Energy Consumption, Environmental Pollution and Economic Growth: Empirical Evidence from Central and Eastern Europe," Energies, MDPI, vol. 12(19), pages 1-27, September.
    7. Bhattacharya, Mita & Rafiq, Shuddhasattwa & Lean, Hooi Hooi & Bhattacharya, Sankar, 2017. "The regulated coal sector and CO2 emissions in Indian growth process: Empirical evidence over half a century and policy suggestions," Applied Energy, Elsevier, vol. 204(C), pages 667-678.
    8. Abdul Rehman & Hengyun Ma & Magdalena Radulescu & Crenguta Ileana Sinisi & Loredana Maria Paunescu & MD Shabbir Alam & Rafael Alvarado, 2021. "The Energy Mix Dilemma and Environmental Sustainability: Interaction among Greenhouse Gas Emissions, Nuclear Energy, Urban Agglomeration, and Economic Growth," Energies, MDPI, vol. 14(22), pages 1-21, November.
    9. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    10. Rath, Badri Narayan & Akram, Vaseem & Bal, Debi Prasad & Mahalik, Mantu Kumar, 2019. "Do fossil fuel and renewable energy consumption affect total factor productivity growth? Evidence from cross-country data with policy insights," Energy Policy, Elsevier, vol. 127(C), pages 186-199.
    11. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    12. Luqman, Muhammad & Ahmad, Najid & Bakhsh, Khuda, 2019. "Nuclear energy, renewable energy and economic growth in Pakistan: Evidence from non-linear autoregressive distributed lag model," Renewable Energy, Elsevier, vol. 139(C), pages 1299-1309.
    13. Abbasi, Kashif Raza & Adedoyin, Festus Fatai & Abbas, Jaffar & Hussain, Khadim, 2021. "The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation," Renewable Energy, Elsevier, vol. 180(C), pages 1439-1450.
    14. Husaini, Dzul Hadzwan & Lean, Hooi Hooi, 2022. "Renewable and non-renewable electricity-growth nexus in Asia: The role of private power plants and oil price threshold effect," Resources Policy, Elsevier, vol. 78(C).
    15. Kumar, Ronald Ravinesh & Stauvermann, Peter Josef & Patel, Arvind & Kumar, Nikeel, 2017. "The effect of energy on output per worker in the Balkan Peninsula: A country-specific study of 12 nations in the Energy Community," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1223-1239.
    16. Odhiambo, Nicholas M, 2020. "Energy consumption and economic growth in Botswana: Empirical evidence from disaggregated data analysis," Working Papers 27659, University of South Africa, Department of Economics.
    17. Fang, Zheng & Chen, Yang, 2017. "Human capital, energy, and economic development – Evidence from Chinese provincial data," RIEI Working Papers 2017-03, Xi'an Jiaotong-Liverpool University, Research Institute for Economic Integration.
    18. Nicholas M. Odhiambo, 2021. "Energy consumption and economic growth in Botswana: empirical evidence from a disaggregated data," International Review of Applied Economics, Taylor & Francis Journals, vol. 35(1), pages 3-24, January.
    19. Shahbaz, Muhammad & Abbas Rizvi, Syed Kumail & Dong, Kangyin & Vo, Xuan Vinh, 2022. "Fiscal decentralization as new determinant of renewable energy demand in China: The role of income inequality and urbanization," Renewable Energy, Elsevier, vol. 187(C), pages 68-80.
    20. Rahman, Mohammad Mafizur & Sultana, Nahid, 2022. "Impacts of institutional quality, economic growth, and exports on renewable energy: Emerging countries perspective," Renewable Energy, Elsevier, vol. 189(C), pages 938-951.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2083-:d:624147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.