IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3396-d809662.html
   My bibliography  Save this article

Study on the Environmental Efficiency of the Chinese Cement Industry Based on the Undesirable Output DEA Model

Author

Listed:
  • Hongxing Tu

    (Economics and Management School, Hubei Polytechnic University, Huangshi 435003, China
    Research Center for Mining and Metallurgy Culture and Socio-Economic Development in the Middle Reaches of Yangtze River, Huangshi 435003, China)

  • Wei Dai

    (Economics and Management School, Hubei Polytechnic University, Huangshi 435003, China)

  • Xu Xiao

    (Business School, Central South University, Changsha 410083, China)

Abstract

In recent decades, China’s cement production has been the highest in the world, but the extensive development model, which has been formed for a long time, has brought serious damage to the natural environment. In order to promote the transformation of the production mode of China’s cement industry, this paper adopts the nonparametric frontier method to analyze the environmental efficiency of China’s cement manufacturing industry using the input–output and pollutant emission data of China’s cement manufacturing industry from 2004 to 2016. The results show that the overall environmental efficiency of China’s cement industry is low, and there is still much room for improvement. Moreover, there are serious imbalances from very low to very high between different regions. Further investigation found that during the study period, strict environmental supervision brought an average compliance cost of CNY 23.41 billion to China’s cement manufacturing industry, but the overall environmental efficiency increased by 23.9 percentage points. Based on these findings, we believe that the focus of environmental supervision of China’s cement manufacturing industry at this stage is to reduce pollution emissions, and force cement enterprises to carry out technological innovation through mandatory emission reduction measures. When formulating policies, the Chinese government needs to explore the best way for environmental supervision between minimizing compliance costs and maximizing efficiency, so as to promote the sustainable development of China’s cement manufacturing industry.

Suggested Citation

  • Hongxing Tu & Wei Dai & Xu Xiao, 2022. "Study on the Environmental Efficiency of the Chinese Cement Industry Based on the Undesirable Output DEA Model," Energies, MDPI, vol. 15(9), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3396-:d:809662
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdul Rehman & Magdalena Radulescu & Hengyun Ma & Vishal Dagar & Imran Hussain & Muhammad Kamran Khan, 2021. "The Impact of Globalization, Energy Use, and Trade on Ecological Footprint in Pakistan: Does Environmental Sustainability Exist?," Energies, MDPI, vol. 14(17), pages 1-16, August.
    2. Long, Xingle & Zhao, Xicang & Cheng, Faxin, 2015. "The comparison analysis of total factor productivity and eco-efficiency in China's cement manufactures," Energy Policy, Elsevier, vol. 81(C), pages 61-66.
    3. Riccardi, R. & Oggioni, G. & Toninelli, R., 2012. "Efficiency analysis of world cement industry in presence of undesirable output: Application of data envelopment analysis and directional distance function," Energy Policy, Elsevier, vol. 44(C), pages 140-152.
    4. Oggioni, G. & Riccardi, R. & Toninelli, R., 2011. "Eco-efficiency of the world cement industry: A data envelopment analysis," Energy Policy, Elsevier, vol. 39(5), pages 2842-2854, May.
    5. Masayuki Shimizu, 2020. "The relationship between pollution abatement costs and environmental regulation: Evidence from the Chinese industrial sector," Review of Development Economics, Wiley Blackwell, vol. 24(2), pages 668-690, May.
    6. Layer, Kevin & Johnson, Andrew L. & Sickles, Robin C. & Ferrier, Gary D., 2020. "Direction selection in stochastic directional distance functions," European Journal of Operational Research, Elsevier, vol. 280(1), pages 351-364.
    7. Zhou, Yan & Xing, Xinpeng & Fang, Kuangnan & Liang, Dapeng & Xu, Chunlin, 2013. "Environmental efficiency analysis of power industry in China based on an entropy SBM model," Energy Policy, Elsevier, vol. 57(C), pages 68-75.
    8. Jin Zhu & Dequn Zhou & Zhengning Pu & Huaping Sun, 2019. "A Study of Regional Power Generation Efficiency in China: Based on a Non-Radial Directional Distance Function Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    9. Abdul Rehman & Hengyun Ma & Magdalena Radulescu & Crenguta Ileana Sinisi & Zahid Yousaf, 2021. "Energy Crisis in Pakistan and Economic Progress: Decoupling the Impact of Coal Energy Consumption in Power and Brick Kilns," Mathematics, MDPI, vol. 9(17), pages 1-15, August.
    10. Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2015. "Analysis of the Environmental Efficiency of the Chinese Transportation Sector Using an Undesirable Output Slacks-Based Measure Data Envelopment Analysis Model," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
    11. Mandal, Sabuj Kumar, 2010. "Do undesirable output and environmental regulation matter in energy efficiency analysis? Evidence from Indian Cement Industry," Energy Policy, Elsevier, vol. 38(10), pages 6076-6083, October.
    12. Fang Zhang & Hong Fang & Junjie Wu & Damian Ward, 2016. "Environmental Efficiency Analysis of Listed Cement Enterprises in China," Sustainability, MDPI, vol. 8(5), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayuan Zhou & Yunxia Li & Bo Li, 2022. "Restructure or Misallocation? Enterprises’ Carbon Emission Intensity under Market Integration," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    2. Talat S. Genc & Stephen Kosempel, 2023. "Energy Transition and the Economy: A Review Article," Energies, MDPI, vol. 16(7), pages 1-26, March.
    3. Hongxing Tu & Wei Dai & Yuan Fang & Xu Xiao, 2022. "Environmental Regulation, Technological Innovation and Industrial Environmental Efficiency: An Empirical Study Based on Chinese Cement Industry," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    4. Hongxing Tu & Lin Wang & Xu Xiao, 2023. "Research on the Optimal Energy Saving and Emission Reduction Path for Promoting High-Quality Industrial Development in Hubei Province," Sustainability, MDPI, vol. 15(11), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Zhang & Hong Fang & Junjie Wu & Damian Ward, 2016. "Environmental Efficiency Analysis of Listed Cement Enterprises in China," Sustainability, MDPI, vol. 8(5), pages 1-19, May.
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Ramli, Noor Asiah & Munisamy, Susila, 2015. "Eco-efficiency in greenhouse emissions among manufacturing industries: A range adjusted measure," Economic Modelling, Elsevier, vol. 47(C), pages 219-227.
    4. Liming Yao & Jiuping Xu & Yifan Li, 2014. "Evaluation of the Efficiency of Low Carbon Industrialization in Cultural and Natural Heritage: Taking Leshan as an Example," Sustainability, MDPI, vol. 6(6), pages 1-18, June.
    5. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    6. Chen, Chien-Ming, 2013. "A critique of non-parametric efficiency analysis in energy economics studies," Energy Economics, Elsevier, vol. 38(C), pages 146-152.
    7. Ansari, Nastaran & Seifi, Abbas, 2013. "A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios," Energy Policy, Elsevier, vol. 58(C), pages 75-89.
    8. Long, Xingle & Sun, Mei & Cheng, Faxin & Zhang, Jijian, 2017. "Convergence analysis of eco-efficiency of China’s cement manufacturers through unit root test of panel data," Energy, Elsevier, vol. 134(C), pages 709-717.
    9. Abdul Rehman & Hengyun Ma & Magdalena Radulescu & Crenguta Ileana Sinisi & Loredana Maria Paunescu & MD Shabbir Alam & Rafael Alvarado, 2021. "The Energy Mix Dilemma and Environmental Sustainability: Interaction among Greenhouse Gas Emissions, Nuclear Energy, Urban Agglomeration, and Economic Growth," Energies, MDPI, vol. 14(22), pages 1-21, November.
    10. Song, Malin & Zhang, Jie & Wang, Shuhong, 2015. "Review of the network environmental efficiencies of listed petroleum enterprises in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 65-71.
    11. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Environmental assessment for corporate sustainability by resource utilization and technology innovation: DEA radial measurement on Japanese industrial sectors," Energy Economics, Elsevier, vol. 46(C), pages 295-307.
    12. Long, Xingle & Zhao, Xicang & Cheng, Faxin, 2015. "The comparison analysis of total factor productivity and eco-efficiency in China's cement manufactures," Energy Policy, Elsevier, vol. 81(C), pages 61-66.
    13. Riccardi, R. & Oggioni, G. & Toninelli, R., 2012. "Efficiency analysis of world cement industry in presence of undesirable output: Application of data envelopment analysis and directional distance function," Energy Policy, Elsevier, vol. 44(C), pages 140-152.
    14. Boussemart, Jean-Philippe & Leleu, Hervé & Shen, Zhiyang, 2017. "Worldwide carbon shadow prices during 1990–2011," Energy Policy, Elsevier, vol. 109(C), pages 288-296.
    15. Yao, Xin & Zhou, Hongchen & Zhang, Aizhen & Li, Aijun, 2015. "Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis," Energy Policy, Elsevier, vol. 84(C), pages 142-154.
    16. Lin, Boqiang & Du, Kerui, 2015. "Energy and CO2 emissions performance in China's regional economies: Do market-oriented reforms matter?," Energy Policy, Elsevier, vol. 78(C), pages 113-124.
    17. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    18. Makridou, Georgia & Andriosopoulos, Kostas & Doumpos, Michael & Zopounidis, Constantin, 2016. "Measuring the efficiency of energy-intensive industries across European countries," Energy Policy, Elsevier, vol. 88(C), pages 573-583.
    19. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    20. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3396-:d:809662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.