IDEAS home Printed from https://ideas.repec.org/p/ecl/riceco/18-010.html
   My bibliography  Save this paper

Direction Selection in Stochastic Directional Distance Functions

Author

Listed:
  • Ferrier, Gary D.

    (Texas A&M U)

  • Johnson, Andrew L.

    (Texas A&M U and Osaka U)

  • Layer, Kevin

    (Rice U)

  • Sickles, Robin C.

    (U of Arkansas)

Abstract

Researchers rely on the distance function to model multiple product production using multiple inputs. A stochastic directional distance function (SDDF) allows for noise in potentially all input and output variables, yet when estimated, the direction selected will affect the functional estimates because deviations from the estimated function are minimized in the specified direction. Specifically, the parameters of the parametric SDDF are point identified when the direction is specified; we show that the parameters of the parametric SDDF are set identified when multiple directions are considered. Further, the set of identified parameters can be narrowed via data-driven approaches to restrict the directions considered. We demonstrate a similar narrowing of the identified parameter set for a shape constrained nonparametric method, where the shape constraints impose standard features of a cost function such as monotonicity and convexity. Our Monte Carlo simulation studies reveal significant improvements, as measured by out of sample radial mean squared error, in functional estimates when we use a directional distance function with an appropriately selected direction and the errors are uncorrelated across variables. We show that these benefits increase as the correlation in error terms across variables increases. This correlation is a type of endogeneity that is common in production settings. From our Monte Carlo simulations we conclude that selecting a direction that is approximately orthogonal to the estimated function in the central region of the data gives significantly better estimates relative to the directions commonly used in the literature. For practitioners, our results imply that selecting a direction vector that has non-zero components for all variables that may have measurement error provides a significant improvement in the estimator's performance. We illustrate these results using cost and production data from three random samples of approximately 500 US hospitals operating in 2007, 2008, and 2009, respectively, and find that the shape constrained nonparametric methods provide a significant increase in flexibility over second order local approximation parametric methods.

Suggested Citation

  • Ferrier, Gary D. & Johnson, Andrew L. & Layer, Kevin & Sickles, Robin C., 2018. "Direction Selection in Stochastic Directional Distance Functions," Working Papers 18-010, Rice University, Department of Economics.
  • Handle: RePEc:ecl:riceco:18-010
    as

    Download full text from publisher

    File URL: https://economics.rice.edu/file/3951/download?token=i53H8h1A
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency: Some clarifications," European Journal of Operational Research, Elsevier, vol. 206(3), pages 702-702, November.
    2. Gautam Gowrisankaran & Aviv Nevo & Robert Town, 2015. "Mergers When Prices Are Negotiated: Evidence from the Hospital Industry," American Economic Review, American Economic Association, vol. 105(1), pages 172-203, January.
    3. Tamer, Elie, 2010. "Partial Identification in Econometrics," Scholarly Articles 34728615, Harvard University Department of Economics.
    4. Rolf Färe & Carlos Martins-Filho & Michael Vardanyan, 2010. "On functional form representation of multi-output production technologies," Journal of Productivity Analysis, Springer, vol. 33(2), pages 81-96, April.
    5. Atkinson, Scott E. & Tsionas, Mike G., 2016. "Directional distance functions: Optimal endogenous directions," Journal of Econometrics, Elsevier, vol. 190(2), pages 301-314.
    6. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-598, October.
    7. Chad Syverson, 2011. "What Determines Productivity?," Journal of Economic Literature, American Economic Association, vol. 49(2), pages 326-365, June.
    8. Jean-Philippe Boussemart & Herv頌eleu & Vivian Valdmanis, 2015. "A two-stage translog marginal cost pricing approach for Floridian hospital outputs," Applied Economics, Taylor & Francis Journals, vol. 47(38), pages 4116-4127, August.
    9. Rolf Färe & Michael Vardanyan, 2016. "A note on parameterizing input distance functions: does the choice of a functional form matter?," Journal of Productivity Analysis, Springer, vol. 45(2), pages 121-130, April.
    10. Diewert, Walter E & Wales, Terence J, 1987. "Flexible Functional Forms and Global Curvature Conditions," Econometrica, Econometric Society, vol. 55(1), pages 43-68, January.
    11. Daisuke Yagi & Yining Chen & Andrew L. Johnson & Timo Kuosmanen, 2020. "Shape-Constrained Kernel-Weighted Least Squares: Estimating Production Functions for Chilean Manufacturing Industries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 43-54, January.
    12. Andrew Johnson & Timo Kuosmanen, 2011. "One-stage estimation of the effects of operational conditions and practices on productive performance: asymptotically normal and efficient, root-n consistent StoNEZD method," Journal of Productivity Analysis, Springer, vol. 36(2), pages 219-230, October.
    13. Zuckerman, Stephen & Hadley, Jack & Iezzoni, Lisa, 1994. "Measuring hospital efficiency with frontier cost functions," Journal of Health Economics, Elsevier, vol. 13(3), pages 255-280, October.
    14. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    15. Henderson,Daniel J. & Parmeter,Christopher F., 2015. "Applied Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521279680, January.
    16. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    17. Chambers,Robert G., 1988. "Applied Production Analysis," Cambridge Books, Cambridge University Press, number 9780521314275, January.
    18. Gary D. Ferrier & Hervé Leleu & Vivian G. Valdmanis & Michael Vardanyan, 2018. "A directional distance function approach for identifying the input/output status of medical residents," Applied Economics, Taylor & Francis Journals, vol. 50(9), pages 1006-1021, February.
    19. Baležentis, Tomas & De Witte, Kristof, 2015. "One- and multi-directional conditional efficiency measurement – Efficiency in Lithuanian family farms," European Journal of Operational Research, Elsevier, vol. 245(2), pages 612-622.
    20. Coelli, Tim & Perelman, Sergio, 1999. "A comparison of parametric and non-parametric distance functions: With application to European railways," European Journal of Operational Research, Elsevier, vol. 117(2), pages 326-339, September.
    21. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    22. Kutlu, Levent, 2018. "A distribution-free stochastic frontier model with endogenous regressors," Economics Letters, Elsevier, vol. 163(C), pages 152-154.
    23. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    24. Färe, Rolf & Pasurka, Carl & Vardanyan, Michael, 2017. "On endogenizing direction vectors in parametric directional distance function-based models," European Journal of Operational Research, Elsevier, vol. 262(1), pages 361-369.
    25. Kapelko, Magdalena & Oude Lansink, Alfons, 2017. "Dynamic multi-directional inefficiency analysis of European dairy manufacturing firms," European Journal of Operational Research, Elsevier, vol. 257(1), pages 338-344.
    26. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    27. Roshdi, Israfil & Hasannasab, Maryam & Margaritis, Dimitris & Rouse, Paul, 2018. "Generalised weak disposability and efficiency measurement in environmental technologies," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1000-1012.
    28. Adler, Nicole & Volta, Nicola, 2016. "Accounting for externalities and disposability: A directional economic environmental distance function," European Journal of Operational Research, Elsevier, vol. 250(1), pages 314-327.
    29. Brandon Pope & Andrew Johnson, 2013. "Returns to scope: a metric for production synergies demonstrated for hospital production," Journal of Productivity Analysis, Springer, vol. 40(2), pages 239-250, October.
    30. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    31. Pastor, Jesus T. & Zofio, Jose L., 2017. "Can Farrell's allocative efficiency be generalized by the directional distance function approach?Author-Name: Aparicio, Juan," European Journal of Operational Research, Elsevier, vol. 257(1), pages 345-351.
    32. Arthur Lewbel, 2019. "The Identification Zoo: Meanings of Identification in Econometrics," Journal of Economic Literature, American Economic Association, vol. 57(4), pages 835-903, December.
    33. COELLI, Tim, 2000. "On the econometric estimation of the distance function representation of a production technology," LIDAM Discussion Papers CORE 2000042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    34. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    35. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    36. Timo Kuosmanen & Andrew L. Johnson, 2010. "Data Envelopment Analysis as Nonparametric Least-Squares Regression," Operations Research, INFORMS, vol. 58(1), pages 149-160, February.
    37. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    38. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    39. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    40. Wooldridge, Jeffrey M., 2009. "On estimating firm-level production functions using proxy variables to control for unobservables," Economics Letters, Elsevier, vol. 104(3), pages 112-114, September.
    41. Atkinson, Scott E & Cornwell, Christopher & Honerkamp, Olaf, 2003. "Measuring and Decomposing Productivity Change: Stochastic Distance Function Estimation versus Data Envelopment Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(2), pages 284-294, April.
    42. Varian, Hal R, 1984. "The Nonparametric Approach to Production Analysis," Econometrica, Econometric Society, vol. 52(3), pages 579-597, May.
    43. Elie Tamer, 2010. "Partial Identification in Econometrics," Annual Review of Economics, Annual Reviews, vol. 2(1), pages 167-195, September.
    44. Eunji Lim, 2014. "On Convergence Rates of Convex Regression in Multiple Dimensions," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 616-628, August.
    45. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    46. Robin Sickles & David Good & Lullit Getachew, 2002. "Specification of Distance Functions Using Semi- and Nonparametric Methods with an Application to the Dynamic Performance of Eastern and Western European Air Carriers," Journal of Productivity Analysis, Springer, vol. 17(1), pages 133-155, January.
    47. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    2. Vardanyan, Michael & Valdmanis, Vivian G. & Leleu, Hervé & Ferrier, Gary D., 2022. "Estimating technology characteristics of the U.S. hospital industry using directional distance functions with optimal directions," Omega, Elsevier, vol. 113(C).
    3. Tsionas, Mike G., 2023. "Joint production in stochastic non-parametric envelopment of data with firm-specific directions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1336-1347.
    4. Tsionas, Mike G., 2020. "On a model of environmental performance and technology gaps," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1141-1152.
    5. Briec, Walter & Dumas, Audrey & Kerstens, Kristiaan & Stenger, Agathe, 2022. "Generalised commensurability properties of efficiency measures: Implications for productivity indicators," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1481-1492.
    6. Hongxing Tu & Wei Dai & Xu Xiao, 2022. "Study on the Environmental Efficiency of the Chinese Cement Industry Based on the Undesirable Output DEA Model," Energies, MDPI, vol. 15(9), pages 1-13, May.
    7. Aparicio, Juan & Zofío, José L., 2023. "Decomposing profit change: Konüs, Bennet and Luenberger indicators," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    8. Chunhua Chen & Jianwei Ren & Lijun Tang & Haohua Liu, 2020. "Additive integer-valued data envelopment analysis with missing data: A multi-criteria evaluation approach," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
    9. Chen Chunhua & Liu Haohua & Tang Lijun & Ren Jianwei, 2021. "A Range Adjusted Measure of Super-Efficiency in Integer-Valued Data Envelopment Analysis with Undesirable Outputs," Journal of Systems Science and Information, De Gruyter, vol. 9(4), pages 378-398, August.
    10. Yongseung Han & Arthur Snow & Ronald S. Warren, 2021. "Changes in the productive efficiency of U.S. flour mills in the late nineteenth century: an input-distance-function approach," Journal of Productivity Analysis, Springer, vol. 56(2), pages 115-132, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    2. Timo Kuosmanen & Sheng Dai, 2023. "Modeling economies of scope in joint production: Convex regression of input distance function," Papers 2311.11637, arXiv.org.
    3. Vardanyan, Michael & Valdmanis, Vivian G. & Leleu, Hervé & Ferrier, Gary D., 2022. "Estimating technology characteristics of the U.S. hospital industry using directional distance functions with optimal directions," Omega, Elsevier, vol. 113(C).
    4. Tsionas, Mike G., 2022. "Convex non-parametric least squares, causal structures and productivity," European Journal of Operational Research, Elsevier, vol. 303(1), pages 370-387.
    5. Kuosmanen, Timo & Zhou, Xun, 2021. "Shadow prices and marginal abatement costs: Convex quantile regression approach," European Journal of Operational Research, Elsevier, vol. 289(2), pages 666-675.
    6. Song, Malin & Wang, Jianlin, 2018. "Environmental efficiency evaluation of thermal power generation in China based on a slack-based endogenous directional distance function model," Energy, Elsevier, vol. 161(C), pages 325-336.
    7. Laurens Cherchye & Thomas Demuynck & Bram De Rock & Marijn Verschelde, 2018. "Nonparametric Production Analysis with Unobserved Heterogeneity in Productivity," Working Papers ECARES 2018-25, ULB -- Universite Libre de Bruxelles.
    8. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    9. Atkinson, Scott E. & Primont, Daniel & Tsionas, Mike G., 2018. "Statistical inference in efficient production with bad inputs and outputs using latent prices and optimal directions," Journal of Econometrics, Elsevier, vol. 204(2), pages 131-146.
    10. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    11. Dewitte, Ruben & Dumont, Michel & Merlevede, Bruno & Rayp, Glenn & Verschelde, Marijn, 2020. "Firm-Heterogeneous Biased Technological Change: A nonparametric approach under endogeneity," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1172-1182.
    12. Fangqing Wei & Junfei Chu & Jiayun Song & Feng Yang, 2019. "A cross-bargaining game approach for direction selection in the directional distance function," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 787-807, September.
    13. Chambers, Robert & Färe, Rolf & Grosskopf, Shawna & Vardanyan, Michael, 2013. "Generalized quadratic revenue functions," Journal of Econometrics, Elsevier, vol. 173(1), pages 11-21.
    14. Tsionas, Mike G., 2023. "Joint production in stochastic non-parametric envelopment of data with firm-specific directions," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1336-1347.
    15. Laurens Cherchye & Bram De Rock & Annalisa Ferrando & Klaas Mulier & Marijn Verschelde, 2020. "Identifying Financial Constraints," Working Papers ECARES 2020-04, ULB -- Universite Libre de Bruxelles.
    16. Laurens Cherchye & Thomas Demuynck & Bram De Rock & Cédric Duprez & Glenn Magerman & Marijn Verschelde, 2021. "Structural Identification of Productivity under Biased Technological Change∗," Working Papers ECARES 2021-28, ULB -- Universite Libre de Bruxelles.
    17. Tsionas, Mike, 2022. "Efficiency estimation using probabilistic regression trees with an application to Chilean manufacturing industries," International Journal of Production Economics, Elsevier, vol. 249(C).
    18. Färe, Rolf & Pasurka, Carl & Vardanyan, Michael, 2017. "On endogenizing direction vectors in parametric directional distance function-based models," European Journal of Operational Research, Elsevier, vol. 262(1), pages 361-369.
    19. Julia Schaefer & Marcel Clermont, 2018. "Stochastic non-smooth envelopment of data for multi-dimensional output," Journal of Productivity Analysis, Springer, vol. 50(3), pages 139-154, December.
    20. Rødseth, Kenneth Løvold, 2023. "Shadow pricing of electricity generation using stochastic and deterministic materials balance models," Applied Energy, Elsevier, vol. 341(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:riceco:18-010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/dericus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.