IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v285y2020i3p1141-1152.html
   My bibliography  Save this article

On a model of environmental performance and technology gaps

Author

Listed:
  • Tsionas, Mike G.

Abstract

In this paper we consider a stochastic directional technology distance function to re-examine the results of recent research in which the authors estimate a generalized directional distance function using programming methods, derive technology gaps and, in a second stage, they fit a Markov process to the technology gaps. One problem is that in the second stage efficiencies and gaps are themselves estimated. Moreover, the authors consider two groups (Annex I and non-Annex I countries according to the Kyoto protocol). We allow for endogeneity of good and bad outputs and inputs, endogenously determined groups of countries, endogenous directions for each country and group, and a distribution of technological gaps (with respect to the meta-technology) which is based on a Markov process. We use a semi-parametric directional technology distance function and we propose stochastic envelopment of different frontiers allowing for its own “meta-inefficiency”. All quantities of interest are estimated jointly using numerical Bayesian techniques.

Suggested Citation

  • Tsionas, Mike G., 2020. "On a model of environmental performance and technology gaps," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1141-1152.
  • Handle: RePEc:eee:ejores:v:285:y:2020:i:3:p:1141-1152
    DOI: 10.1016/j.ejor.2020.02.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720301430
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.02.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Gang & Zervopoulos, Panagiotis D., 2014. "Estimating the technical efficiency of health care systems: A cross-country comparison using the directional distance function," European Journal of Operational Research, Elsevier, vol. 238(3), pages 899-910.
    2. Leopold Simar & Paul Wilson, 2000. "A general methodology for bootstrapping in non-parametric frontier models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(6), pages 779-802.
    3. Kerstens, Kristiaan & O’Donnell, Christopher & Van de Woestyne, Ignace, 2019. "Metatechnology frontier and convexity: A restatement," European Journal of Operational Research, Elsevier, vol. 275(2), pages 780-792.
    4. Godsill, Simon J. & Doucet, Arnaud & West, Mike, 2004. "Monte Carlo Smoothing for Nonlinear Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 156-168, January.
    5. Atkinson, Scott E. & Tsionas, Mike G., 2016. "Directional distance functions: Optimal endogenous directions," Journal of Econometrics, Elsevier, vol. 190(2), pages 301-314.
    6. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.
    7. Christine Amsler & Christopher J. O’Donnell & Peter Schmidt, 2017. "Stochastic metafrontiers," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 1007-1020, October.
    8. Creal, Drew D. & Tsay, Ruey S., 2015. "High dimensional dynamic stochastic copula models," Journal of Econometrics, Elsevier, vol. 189(2), pages 335-345.
    9. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    10. Nicolas Chopin & Sumeetpal S. Singh, 2013. "On the Particle Gibbs Sampler," Working Papers 2013-41, Center for Research in Economics and Statistics.
    11. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    12. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    13. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    14. Simar, Leopold & Wilson, Paul W., 1999. "Estimating and bootstrapping Malmquist indices," European Journal of Operational Research, Elsevier, vol. 115(3), pages 459-471, June.
    15. Layer, Kevin & Johnson, Andrew L. & Sickles, Robin C. & Ferrier, Gary D., 2020. "Direction selection in stochastic directional distance functions," European Journal of Operational Research, Elsevier, vol. 280(1), pages 351-364.
    16. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
    17. Léopold Simar & Paul W. Wilson, 1998. "Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models," Management Science, INFORMS, vol. 44(1), pages 49-61, January.
    18. Michael Grubb, 2003. "The Economics of the Kyoto Protocol," World Economics, World Economics, 1 Ivory Square, Plantation Wharf, London, United Kingdom, SW11 3UE, vol. 4(3), pages 143-189, July.
    19. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    20. Chien-Ho Wang & Ming-Hui Ko & Wan-Jiun Chen, 2019. "Effects of Kyoto Protocol on CO 2 Emissions: A Five-Country Rolling Regression Analysis," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    21. Atkinson, Scott E. & Primont, Daniel & Tsionas, Mike G., 2018. "Statistical inference in efficient production with bad inputs and outputs using latent prices and optimal directions," Journal of Econometrics, Elsevier, vol. 204(2), pages 131-146.
    22. Huang, Tai-Hsin & Chiang, Dien-Lin & Tsai, Chao-Min, 2015. "Applying the New Metafrontier Directional Distance Function to Compare Banking Efficiencies in Central and Eastern European Countries," Economic Modelling, Elsevier, vol. 44(C), pages 188-199.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mike G. Tsionas & Nicholas Apergis, 2023. "Another look at contagion across United States and European financial markets: Evidence from the credit default swaps markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(1), pages 1137-1155, January.
    2. Tsionas, Mike G., 2022. "Convex non-parametric least squares, causal structures and productivity," European Journal of Operational Research, Elsevier, vol. 303(1), pages 370-387.
    3. Kounetas, Kostas & Napolitano, Oreste, 2015. "Too much EMU? An investigation of technology gaps," MPRA Paper 67600, University Library of Munich, Germany.
    4. Bournakis, Ioannis & Tsionas, Mike G., 2023. "A Non-Parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," MPRA Paper 118100, University Library of Munich, Germany.
    5. Emmanuel C. Mamatzakis & Steven Ongena & Mike G. Tsionas, 2023. "The response of household debt to COVID-19 using a neural networks VAR in OECD," Empirical Economics, Springer, vol. 65(1), pages 65-91, July.
    6. Tsionas, Mike G., 2023. "Clustering and meta-envelopment in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 304(2), pages 763-778.
    7. Nguyen, Minh-Anh Thi & Yu, Ming-Miin & Lirn, Taih-Cherng, 2022. "Revenue efficiency across airline business models: A bootstrap non-convex meta-frontier approach," Transport Policy, Elsevier, vol. 117(C), pages 108-117.
    8. Pérez-Cárceles, María Concepción & Gómez-García, Juan & Gómez Gallego, Juan Cándido, 2019. "Goodness of governance effect on European banking efficiency," International Review of Economics & Finance, Elsevier, vol. 64(C), pages 29-40.
    9. Kounetas, Kostas & Napolitano, Oreste, 2018. "Modeling the incidence of international trade on Italian regional productive efficiency using a meta-frontier DEA approach," Economic Modelling, Elsevier, vol. 71(C), pages 45-58.
    10. Isabel-María García-Sánchez & Luis Rodríguez-Domínguez & Javier Parra-Domínguez, 2013. "Yearly evolution of police efficiency in Spain and explanatory factors," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 31-62, January.
    11. Wijesiri, Mahinda & Yaron, Jacob & Meoli, Michele, 2017. "Assessing the financial and outreach efficiency of microfinance institutions: Do age and size matter?," Journal of Multinational Financial Management, Elsevier, vol. 40(C), pages 63-76.
    12. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    13. Wijesiri, Mahinda & Meoli, Michele, 2015. "Productivity change of microfinance institutions in Kenya: A bootstrap Malmquist approach," Journal of Retailing and Consumer Services, Elsevier, vol. 25(C), pages 115-121.
    14. Esteve, Miriam & Aparicio, Juan & Rodriguez-Sala, Jesus J. & Zhu, Joe, 2023. "Random Forests and the measurement of super-efficiency in the context of Free Disposal Hull," European Journal of Operational Research, Elsevier, vol. 304(2), pages 729-744.
    15. Amir Moradi-Motlagh & Ali Emrouznejad, 2022. "The origins and development of statistical approaches in non-parametric frontier models: a survey of the first two decades of scholarly literature (1998–2020)," Annals of Operations Research, Springer, vol. 318(1), pages 713-741, November.
    16. Manthos D. Delis & Pantelis Kazakis & Constantin Zopounidis, 2021. "Management Practices and Takeover Decisions," Working Papers 2021_10, Business School - Economics, University of Glasgow.
    17. Boutheina Bannour & Asma Sghaier & Mohammad Nurunnabi, 2020. "How to Choose a Nonparametric Frontier Model? Technical Efficiency of Turkish Banks Assessing Global," Global Business Review, International Management Institute, vol. 21(2), pages 348-364, April.
    18. Capasso, Salvatore & Kaisari, Maria & Kounetas, Konstantinos & Lainas, Elias, 2024. "School productive performance and technology gaps: New evidence from PISA 2018," Economic Modelling, Elsevier, vol. 131(C).
    19. Areti Gkypali & Kostas Kounetas & Kostas Tsekouras, 2019. "European countries’ competitiveness and productive performance evolution: unraveling the complexity in a heterogeneity context," Journal of Evolutionary Economics, Springer, vol. 29(2), pages 665-695, April.
    20. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:285:y:2020:i:3:p:1141-1152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.