IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

On the Particle Gibbs Sampler

Listed author(s):
  • Nicolas Chopin



  • Sumeetpal S. Singh


    (Cambridge University)

The particle Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm which operates on the extended space of the auxiliary variables generated by an interacting particle system. In particular, it samples the discrete variables that determine the particle genealogy. We propose a coupling construction between two particle Gibbs updates from different starting points, which is such that the coupling probability may be made arbitrary large by taking the particle system large enough. A direct consequence of this result is the uniform ergodicity of the Particle Gibbs Markov kernel. We discuss several algorithmic variations of Particle Gibbs, either proposed in the literature or original. For some of these variants we are able to prove that they dominate the original algorithm in asymptotic efficiency as measured by the variance of the central limit theorem's limiting distribution. A detailed numerical study is provided to demonstrate the efficacy of Particle Gibbs and the proposed variants

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Crest working paper version
Download Restriction: no

Paper provided by Center for Research in Economics and Statistics in its series Working Papers with number 2013-41.

in new window

Length: 36
Date of creation: Dec 2013
Handle: RePEc:crs:wpaper:2013-41
Contact details of provider: Postal:
Bâtiment ENSAE, 5 rue Henry LE Chatelier, 91120 Palaiseau

Phone: 01 41 17 60 81
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342.
  2. N. Chopin & P. E. Jacob & O. Papaspiliopoulos, 2013. "SMC-super-2: an efficient algorithm for sequential analysis of state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 397-426, June.
  3. repec:dau:papers:123456789/7305 is not listed on IDEAS
  4. Pitt, Michael K. & Silva, Ralph dos Santos & Giordani, Paolo & Kohn, Robert, 2012. "On some properties of Markov chain Monte Carlo simulation methods based on the particle filter," Journal of Econometrics, Elsevier, vol. 171(2), pages 134-151.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:2013-41. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sri Srikandan)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.