IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v204y2018i2p131-146.html
   My bibliography  Save this article

Statistical inference in efficient production with bad inputs and outputs using latent prices and optimal directions

Author

Listed:
  • Atkinson, Scott E.
  • Primont, Daniel
  • Tsionas, Mike G.

Abstract

Researchers employ the directional distance function (DDF) to estimate multiple-input and multiple-output production, firm inefficiency, and productivity growth. We relax restrictive assumptions by computing optimal directions subject to profit maximization and cost minimization, correct for the potential endogeneity of inputs and outputs, estimate latent prices for bad outputs, measure firms’ responses to shadow prices rather than actual prices, and introduce an unobserved productivity term into the DDF. For an unbalanced panel of U.S. electric utilities, a model assuming profit-maximization outperforms one assuming cost-minimization, while lagged productivity and energy price have the greatest effect on productivity.

Suggested Citation

  • Atkinson, Scott E. & Primont, Daniel & Tsionas, Mike G., 2018. "Statistical inference in efficient production with bad inputs and outputs using latent prices and optimal directions," Journal of Econometrics, Elsevier, vol. 204(2), pages 131-146.
  • Handle: RePEc:eee:econom:v:204:y:2018:i:2:p:131-146
    DOI: 10.1016/j.jeconom.2017.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407618300162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2017.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jose Zofio & Jesus Pastor & Juan Aparicio, 2013. "The directional profit efficiency measure: on why profit inefficiency is either technical or allocative," Journal of Productivity Analysis, Springer, vol. 40(3), pages 257-266, December.
    2. Laurits R. Christensen & Dale W. Jorgenson, 1970. "U.S. Real Product And Real Factor Input, 1929–1967," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 16(1), pages 19-50, March.
    3. Atkinson, Scott E & Halvorsen, Robert, 1976. "Interfuel Substitution in Steam Electric Power Generation," Journal of Political Economy, University of Chicago Press, vol. 84(5), pages 959-978, October.
    4. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    5. Krüger, Jens & Hampf, Benjamin, 2015. "Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 77007, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Atkinson, Scott E. & Tsionas, Mike G., 2016. "Directional distance functions: Optimal endogenous directions," Journal of Econometrics, Elsevier, vol. 190(2), pages 301-314.
    7. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "Multilateral Comparisons of Output, Input, and Productivity Using Superlative Index Numbers," Economic Journal, Royal Economic Society, vol. 92(365), pages 73-86, March.
    8. Pagan, Adrian, 1979. "Some consequences of viewing LIML as an iterated Aitken estimator," Economics Letters, Elsevier, vol. 3(4), pages 369-372.
    9. Perrakis, Konstantinos & Ntzoufras, Ioannis & Tsionas, Efthymios G., 2014. "On the use of marginal posteriors in marginal likelihood estimation via importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 54-69.
    10. Olley, G Steven & Pakes, Ariel, 1996. "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, Econometric Society, vol. 64(6), pages 1263-1297, November.
    11. Gallant, A. Ronald, 1982. "Unbiased determination of production technologies," Journal of Econometrics, Elsevier, vol. 20(2), pages 285-323, November.
    12. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    13. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    14. Atkinson, Scott E & Halvorsen, Robert, 1980. "A Test of Relative and Absolute Price Efficiency in Regulated Utilities," The Review of Economics and Statistics, MIT Press, vol. 62(1), pages 81-88, February.
    15. Shawna Grosskopf, 2003. "Some Remarks on Productivity and its Decompositions," Journal of Productivity Analysis, Springer, vol. 20(3), pages 459-474, November.
    16. Benjamin Hampf & Jens J. Krüger, 2015. "Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 920-938.
    17. Fuss, Melvyn & McFadden, Daniel (ed.), 1978. "Production Economics: A Dual Approach to Theory and Applications," Elsevier Monographs, Elsevier, edition 1, number 9780444850133.
    18. R. Färe & S. Grosskopf & G. Whittaker, 2013. "Directional output distance functions: endogenous directions based on exogenous normalization constraints," Journal of Productivity Analysis, Springer, vol. 40(3), pages 267-269, December.
    19. Pope, Rulon D. & Just, Richard E., 1996. "Empirical implementation of ex ante cost functions," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 231-249.
    20. Yaisawarng, Suthathip & Klein, J Douglass, 1994. "The Effects of Sulfur Dioxide Controls on Productivity Change in the U.S. Electric Power Industry," The Review of Economics and Statistics, MIT Press, vol. 76(3), pages 447-460, August.
    21. Severin Borenstein & James Bushnell, 2015. "The US Electricity Industry After 20 Years of Restructuring," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 437-463, August.
    22. Guohua Feng & Apostolos Serletis, 2009. "Efficiency and productivity of the US banking industry, 1998-2005: evidence from the Fourier cost function satisfying global regularity conditions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(1), pages 105-138.
    23. Ulrich Doraszelski & Jordi Jaumandreu, 2013. "R&D and Productivity: Estimating Endogenous Productivity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(4), pages 1338-1383.
    24. James Levinsohn & Amil Petrin, 2003. "Estimating Production Functions Using Inputs to Control for Unobservables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 70(2), pages 317-341.
    25. Wooldridge, Jeffrey M., 2009. "On estimating firm-level production functions using proxy variables to control for unobservables," Economics Letters, Elsevier, vol. 104(3), pages 112-114, September.
    26. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    27. Cowing, Thomas G., 1978. "The Effectiveness of Rate-of-Return Regulation: An Empirical Test Using Profit Functions," Histoy of Economic Thought Chapters, in: Fuss, Melvyn & McFadden, Daniel (ed.),Production Economics: A Dual Approach to Theory and Applications, volume 2, chapter 8, McMaster University Archive for the History of Economic Thought.
    28. Meredith Fowlie, 2010. "Emissions Trading, Electricity Restructuring, and Investment in Pollution Abatement," American Economic Review, American Economic Association, vol. 100(3), pages 837-869, June.
    29. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    2. De Silva, Dakshina G. & Hubbard, Timothy P. & Schiller, Anita R. & Tsionas, Mike G., 2023. "Estimating outcomes in the presence of endogeneity and measurement error with an application to R&D," The Quarterly Review of Economics and Finance, Elsevier, vol. 88(C), pages 278-294.
    3. Assaf, A. George & Tsionas, Mike & Kock, Florian & Josiassen, Alexander, 2021. "A Bayesian non-parametric stochastic frontier model," Annals of Tourism Research, Elsevier, vol. 87(C).
    4. Vardanyan, Michael & Valdmanis, Vivian G. & Leleu, Hervé & Ferrier, Gary D., 2022. "Estimating technology characteristics of the U.S. hospital industry using directional distance functions with optimal directions," Omega, Elsevier, vol. 113(C).
    5. Scott E. Atkinson & Rong Luo, 2024. "Estimation Of Production Technologies With Output And Environmental Constraints," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(2), pages 755-780, May.
    6. Du, Limin & Lu, Yunguo & Ma, Chunbo, 2022. "Carbon efficiency and abatement cost of China's coal-fired power plants," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    7. Tsionas, Mike G., 2020. "On a model of environmental performance and technology gaps," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1141-1152.
    8. Tsionas, Mike G., 2024. "A generalized inefficiency model with input and output dependence," European Journal of Operational Research, Elsevier, vol. 312(1), pages 315-323.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scott E. Atkinson & Mike G. Tsionas, 2018. "Shadow directional distance functions with bads: GMM estimation of optimal directions and efficiencies," Empirical Economics, Springer, vol. 54(1), pages 207-230, February.
    2. Färe, Rolf & Pasurka, Carl & Vardanyan, Michael, 2017. "On endogenizing direction vectors in parametric directional distance function-based models," European Journal of Operational Research, Elsevier, vol. 262(1), pages 361-369.
    3. Vardanyan, Michael & Valdmanis, Vivian G. & Leleu, Hervé & Ferrier, Gary D., 2022. "Estimating technology characteristics of the U.S. hospital industry using directional distance functions with optimal directions," Omega, Elsevier, vol. 113(C).
    4. Layer, Kevin & Johnson, Andrew L. & Sickles, Robin C. & Ferrier, Gary D., 2020. "Direction selection in stochastic directional distance functions," European Journal of Operational Research, Elsevier, vol. 280(1), pages 351-364.
    5. Victor Aguirregabiria & Margaret Slade, 2017. "Empirical models of firms and industries," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1445-1488, December.
    6. Atkinson, Scott E. & Tsionas, Mike G., 2016. "Directional distance functions: Optimal endogenous directions," Journal of Econometrics, Elsevier, vol. 190(2), pages 301-314.
    7. Maican, Florin & Orth, Matilda, 2021. "Determinants of economies of scope in retail," International Journal of Industrial Organization, Elsevier, vol. 75(C).
    8. Maican, Florin & Orth, Matilda, 2021. "Entry Regulations and Product Variety in Retail," CEPR Discussion Papers 15992, C.E.P.R. Discussion Papers.
    9. Deng, Zhongqi & Jiang, Nan & Pang, Ruizhi, 2021. "Factor-analysis-based directional distance function: The case of New Zealand hospitals," Omega, Elsevier, vol. 98(C).
    10. Bibhuti Sarker, 2023. "Foreign firms in the industry frontier and productivity convergence: Importance of proximity and firm attributes," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 906-925, March.
    11. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    12. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    13. Bricongne, Jean-Charles & Delpeuch, Samuel & Lopez-Forero, Margarita, 2023. "Productivity slowdown and tax havens: Where is measured value creation?," Journal of International Economics, Elsevier, vol. 143(C).
    14. Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023. "Prices, profits, proxies, and production," Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
    15. Amit Gandhi & Salvador Navarro & David Rivers, 2017. "How Heterogeneous is Productivity? A Comparison of Gross Output and Value Added," University of Western Ontario, Centre for Human Capital and Productivity (CHCP) Working Papers 201727, University of Western Ontario, Centre for Human Capital and Productivity (CHCP).
    16. Dolores Añón Higón & Juan A. Máñez & Juan A. Sanchis-Llopis, 2018. "Intramural and external R&D: evidence for complementarity or substitutability," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 35(2), pages 555-577, August.
    17. Emanuele Forlani & Ralf Martin & Giordano Mion & Mirabelle Muûls, 2023. "Unraveling Firms: Demand, Productivity and Markups Heterogeneity," The Economic Journal, Royal Economic Society, vol. 133(654), pages 2251-2302.
    18. Wolfhard Kaus & Viktor Slavtchev & Markus Zimmermann, 2024. "Intangible capital and productivity: Firm-level evidence from German manufacturing," Oxford Economic Papers, Oxford University Press, vol. 76(4), pages 970-996.
    19. Davide Castellani & Mariacristina Piva & Torben Schubert & Marco Vivarelli, 2018. "The source of the US /EU Productivity Gap:Less and less effective R&D," LEM Papers Series 2018/16, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. Maican, Florin & Orth, Matilda, 2018. "Inventory Behavior, Demand, and Productivity in Retail," CEPR Discussion Papers 13308, C.E.P.R. Discussion Papers.

    More about this item

    Keywords

    Bayesian; Directional distance; Productivity; Bad outputs; Latent prices; Efficiency; Optimal directions; Shadow prices;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:204:y:2018:i:2:p:131-146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.