IDEAS home Printed from https://ideas.repec.org/a/oup/ajagec/v97y2015i3p920-938..html
   My bibliography  Save this article

Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases

Author

Listed:
  • Benjamin Hampf
  • Jens J. Krüger

Abstract

This article explores the reduction potential of greenhouse gases for major pollution-emitting countries of the world using nonparametric productivity measurement methods and directional distance functions. In contrast to the existing literature, we apply optimization methods to endogenously determine optimal directions for the efficiency analysis. These directions represent the compromise of output enhancement and emissions reduction. The results show that for reasonable directions the adoption of best practices would lead to sizable emission reductions in a range of approximately 20% compared with current levels.

Suggested Citation

  • Benjamin Hampf & Jens J. Krüger, 2015. "Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 920-938.
  • Handle: RePEc:oup:ajagec:v:97:y:2015:i:3:p:920-938.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ajae/aau035
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jens J. Krüger & Moritz Tarach, 2022. "Greenhouse Gas Emission Reduction Potentials in Europe by Sector: A Bootstrap-Based Nonparametric Efficiency Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(4), pages 867-898, April.
    2. Du, Limin & Lu, Yunguo & Ma, Chunbo, 2022. "Carbon efficiency and abatement cost of China's coal-fired power plants," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    3. Sebastián Lozano & Narges Soltani & Akram Dehnokhalaji, 2020. "A compromise programming approach for target setting in DEA," Annals of Operations Research, Springer, vol. 288(1), pages 363-390, May.
    4. Jindal, Abhinav & Nilakantan, Rahul & Sinha, Avik, 2024. "CO2 emissions abatement costs and drivers for Indian thermal power industry," Energy Policy, Elsevier, vol. 184(C).
    5. Dakpo, K Hervé & Lansink, Alfons Oude, 2019. "Dynamic pollution-adjusted inefficiency under the by-production of bad outputs," European Journal of Operational Research, Elsevier, vol. 276(1), pages 202-211.
    6. Sebastián Lozano & Narges Soltani, 2018. "DEA target setting using lexicographic and endogenous directional distance function approaches," Journal of Productivity Analysis, Springer, vol. 50(1), pages 55-70, October.
    7. Scott E. Atkinson & Mike G. Tsionas, 2018. "Shadow directional distance functions with bads: GMM estimation of optimal directions and efficiencies," Empirical Economics, Springer, vol. 54(1), pages 207-230, February.
    8. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    9. Lozano, Sebastián & Khezri, Somayeh, 2021. "Network DEA smallest improvement approach," Omega, Elsevier, vol. 98(C).
    10. Krüger, Jens J., 2018. "Direct targeting of efficient DMUs for benchmarking," International Journal of Production Economics, Elsevier, vol. 199(C), pages 1-6.
    11. Cherchye, Laurens & De Rock, Bram & Walheer, Barnabé, 2016. "Multi-output profit efficiency and directional distance functions," Omega, Elsevier, vol. 61(C), pages 100-109.
    12. Kumbhakar, Subal C. & Tsionas, Mike G., 2021. "Dissections of input and output efficiency: A generalized stochastic frontier model," International Journal of Production Economics, Elsevier, vol. 232(C).
    13. Moriah Bostian & Rolf Färe & Shawna Grosskopf & Tommy Lundgren & William L. Weber, 2018. "Time substitution for environmental performance: The case of Swedish manufacturing," Empirical Economics, Springer, vol. 54(1), pages 129-152, February.
    14. Krüger, Jens J., 2021. "Nonparametric portfolio efficiency measurement with higher moments," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 130825, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    15. Jens J. Krüger, 2017. "Revisiting the world technology frontier: a directional distance function approach," Journal of Economic Growth, Springer, vol. 22(1), pages 67-95, March.
    16. Färe, Rolf & Pasurka, Carl & Vardanyan, Michael, 2017. "On endogenizing direction vectors in parametric directional distance function-based models," European Journal of Operational Research, Elsevier, vol. 262(1), pages 361-369.
    17. Justas Streimikis & Z. Y. Shen & Tomas Balezentis, 2024. "Does the energy-related greenhouse gas emission abatement cost depend on the optimization direction: shadow pricing based on the weak disposability technology in the European Union agriculture," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(3), pages 593-619, September.
    18. Vardanyan, Michael & Valdmanis, Vivian G. & Leleu, Hervé & Ferrier, Gary D., 2022. "Estimating technology characteristics of the U.S. hospital industry using directional distance functions with optimal directions," Omega, Elsevier, vol. 113(C).
    19. Benjamin Hampf, 2018. "Measuring inefficiency in the presence of bad outputs: Does the disposability assumption matter?," Empirical Economics, Springer, vol. 54(1), pages 101-127, February.
    20. Atkinson, Scott E. & Primont, Daniel & Tsionas, Mike G., 2018. "Statistical inference in efficient production with bad inputs and outputs using latent prices and optimal directions," Journal of Econometrics, Elsevier, vol. 204(2), pages 131-146.
    21. Moriah Bostian & Rolf Färe & Shawna Grosskopf & Tommy Lundgren, 2022. "Prevention or cure? Optimal abatement mix," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(4), pages 503-531, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ajagec:v:97:y:2015:i:3:p:920-938.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.