IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v50y2018i1d10.1007_s11123-018-0534-x.html
   My bibliography  Save this article

DEA target setting using lexicographic and endogenous directional distance function approaches

Author

Listed:
  • Sebastián Lozano

    (University of Seville)

  • Narges Soltani

    (Kharazmi University)

Abstract

Directional Distance Function (DDF) is an approach often used in data envelopment analysis (DEA) due to its clear interpretation and to the flexibility provided by the possibility of choosing the projection direction towards the efficient frontier. In this paper two new DDF approaches are considered. The first one uses an exogenous directional vector and a multi-stage methodology that at each step uses the projection along the input and output dimensions of the directional vector that can be improved. This lexicographic DDF approach also computes a directional efficiency score and a directional inefficiency indicator for each input and output variable. The second approach is a non-linear optimization model that endogenously determines the directional vector so that the smallest improvement required to reach the efficient frontier is computed.

Suggested Citation

  • Sebastián Lozano & Narges Soltani, 2018. "DEA target setting using lexicographic and endogenous directional distance function approaches," Journal of Productivity Analysis, Springer, vol. 50(1), pages 55-70, October.
  • Handle: RePEc:kap:jproda:v:50:y:2018:i:1:d:10.1007_s11123-018-0534-x
    DOI: 10.1007/s11123-018-0534-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11123-018-0534-x
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-018-0534-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jesus T. Pastor & Juan Aparicio & Javier Alcaraz & Fernando Vidal & Diego Pastor, 2016. "The Reverse Directional Distance Function," International Series in Operations Research & Management Science, in: Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor (ed.), Advances in Efficiency and Productivity, chapter 0, pages 15-57, Springer.
    2. Krüger, Jens & Hampf, Benjamin, 2015. "Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 77007, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    4. M C A Silva Portela & E Thanassoulis & G Simpson, 2004. "Negative data in DEA: a directional distance approach applied to bank branches," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(10), pages 1111-1121, October.
    5. Benjamin Hampf & Jens J. Krüger, 2015. "Optimal Directions for Directional Distance Functions: An Exploration of Potential Reductions of Greenhouse Gases," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 920-938.
    6. Jose Zofio & Jesus Pastor & Juan Aparicio, 2013. "The directional profit efficiency measure: on why profit inefficiency is either technical or allocative," Journal of Productivity Analysis, Springer, vol. 40(3), pages 257-266, December.
    7. Lee, Chia-Yen, 2016. "Nash-profit efficiency: A measure of changes in market structures," European Journal of Operational Research, Elsevier, vol. 255(2), pages 659-663.
    8. Asmild, Mette & Pastor, Jesús T., 2010. "Slack free MEA and RDM with comprehensive efficiency measures," Omega, Elsevier, vol. 38(6), pages 475-483, December.
    9. Pastor, J. T. & Ruiz, J. L. & Sirvent, I., 1999. "An enhanced DEA Russell graph efficiency measure," European Journal of Operational Research, Elsevier, vol. 115(3), pages 596-607, June.
    10. Cinzia Daraio & Léopold Simar, 2016. "Efficiency and benchmarking with directional distances: a data-driven approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(7), pages 928-944, July.
    11. Lozano, Sebastián & Calzada-Infante, Laura, 2018. "Computing gradient-based stepwise benchmarking paths," Omega, Elsevier, vol. 81(C), pages 195-207.
    12. Korhonen, Pekka J. & Dehnokhalaji, Akram & Nasrabadi, Nasim, 2018. "A lexicographic radial projection onto the efficient frontier in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1005-1012.
    13. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    14. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions," Ecological Economics, Elsevier, vol. 66(4), pages 687-699, July.
    15. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    16. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Target setting for airlines incorporating CO2 emissions: The DEA bargaining approach," Journal of Air Transport Management, Elsevier, vol. 108(C).
    2. Lozano, Sebastián & Khezri, Somayeh, 2021. "Network DEA smallest improvement approach," Omega, Elsevier, vol. 98(C).
    3. Yu, Ming-Miin & Rakshit, Ipsita, 2024. "How to establish input and output targets for airlines with heterogeneous production technologies: A nash bargaining DEA approach within the meta-frontier framework," Journal of Air Transport Management, Elsevier, vol. 116(C).
    4. Kao, Chiang, 2022. "A maximum slacks-based measure of efficiency for closed series production systems," Omega, Elsevier, vol. 106(C).
    5. Sebastián Lozano & Narges Soltani, 2020. "A modified discrete Raiffa approach for efficiency assessment and target setting," Annals of Operations Research, Springer, vol. 292(1), pages 71-95, September.
    6. Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastián Lozano & Narges Soltani, 2020. "A modified discrete Raiffa approach for efficiency assessment and target setting," Annals of Operations Research, Springer, vol. 292(1), pages 71-95, September.
    2. Sebastián Lozano & Narges Soltani & Akram Dehnokhalaji, 2020. "A compromise programming approach for target setting in DEA," Annals of Operations Research, Springer, vol. 288(1), pages 363-390, May.
    3. Tianqun Xu & Ping Gao & Qian Yu & Debin Fang, 2017. "An Improved Eco-Efficiency Analysis Framework Based on Slacks-Based Measure Method," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    4. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    5. Malin Song & Jianlin Wang & Jiajia Zhao & Tomas Baležentis & Zhiyang Shen, 2020. "Production and safety efficiency evaluation in Chinese coal mines: accident deaths as undesirable output," Annals of Operations Research, Springer, vol. 291(1), pages 827-845, August.
    6. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
    7. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    8. Jesus Pastor & C. Lovell & Juan Aparicio, 2012. "Families of linear efficiency programs based on Debreu’s loss function," Journal of Productivity Analysis, Springer, vol. 38(2), pages 109-120, October.
    9. Fangqing Wei & Junfei Chu & Jiayun Song & Feng Yang, 2019. "A cross-bargaining game approach for direction selection in the directional distance function," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 787-807, September.
    10. Färe, Rolf & Pasurka, Carl & Vardanyan, Michael, 2017. "On endogenizing direction vectors in parametric directional distance function-based models," European Journal of Operational Research, Elsevier, vol. 262(1), pages 361-369.
    11. Aparicio, Juan & Pastor, Jesus T., 2014. "Closest targets and strong monotonicity on the strongly efficient frontier in DEA," Omega, Elsevier, vol. 44(C), pages 51-57.
    12. Juan Aparicio & Magdalena Kapelko, 2019. "Enhancing the Measurement of Composite Indicators of Corporate Social Performance," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(2), pages 807-826, July.
    13. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    14. Halická, Margaréta & Trnovská, Mária & Černý, Aleš, 2024. "A unified approach to radial, hyperbolic, and directional efficiency measurement in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 312(1), pages 298-314.
    15. Tavana, Madjid & Izadikhah, Mohammad & Toloo, Mehdi & Roostaee, Razieh, 2021. "A new non-radial directional distance model for data envelopment analysis problems with negative and flexible measures," Omega, Elsevier, vol. 102(C).
    16. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    17. Aparicio, Juan & Cordero, Jose M. & Gonzalez, Martin & Lopez-Espin, Jose J., 2018. "Using non-radial DEA to assess school efficiency in a cross-country perspective: An empirical analysis of OECD countries," Omega, Elsevier, vol. 79(C), pages 9-20.
    18. Krüger, Jens J., 2018. "Direct targeting of efficient DMUs for benchmarking," International Journal of Production Economics, Elsevier, vol. 199(C), pages 1-6.
    19. Lin, Ruiyue & Liu, Qian, 2021. "Multiplier dynamic data envelopment analysis based on directional distance function: An application to mutual funds," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1043-1057.
    20. Falavigna, G. & Ippoliti, R., 2020. "The socio-economic planning of a community nurses programme in mountain areas: A Directional Distance Function approach," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:50:y:2018:i:1:d:10.1007_s11123-018-0534-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.