IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v45y2024i1p149-171.html
   My bibliography  Save this article

Endogenous Bad Outputs and Technical Inefficiency in U.S. Electric Utilities

Author

Listed:
  • Mike Tsionas
  • Subal C. Kumbhakar

Abstract

In this paper, we consider a simultaneous modeling of good and bad outputs. We use an input distance function (IDF) with endogenous inputs as well as endogenous bad outputs, which is novel in the literature. Moreover, we model input efficiency to depend on the production of bad outputs which allows us to investigate whether emissions of pollutants (bad outputs) are related to technological performance (technical efficiency). We also model production of each bad output with a spatial structure separately, each depending on production of good outputs, inputs and other exogenous variables. These bad output production functions allow us to estimate both direct and indirect effects of good output on the production of bad outputs, which may be of special interest because they show the cost (to the society) in terms of releasing pollutants to the environment in order to increase production of good outputs. We apply the new technique to a data set on U.S. electric utilities with four bad outputs, three inputs and two good outputs. We used a Bayesian technique to estimate the model which is a system consisting of the input distance function, reduced form equations for each input, dynamics of inefficiency and bad output production technology—separately for each. Empirically, bad outputs are found to affect inefficiency positively. Percentage increases in inefficiency due to a percentage increase in each bad output are found to vary from 0.225% to 0.42%. Energy prices are found to be positively related to inefficiency. From the spatial specifications of bad outputs, we find that the spillover effects of increasing production of good outputs account for the majority of the total effect, indicating that neighborhood effects are more important than own effects. This means, the neighboring utilities played a crucial role indicating “contagion†of practices.

Suggested Citation

  • Mike Tsionas & Subal C. Kumbhakar, 2024. "Endogenous Bad Outputs and Technical Inefficiency in U.S. Electric Utilities," The Energy Journal, , vol. 45(1), pages 149-171, January.
  • Handle: RePEc:sae:enejou:v:45:y:2024:i:1:p:149-171
    DOI: 10.5547/01956574.45.1.mtsi
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.45.1.mtsi
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.45.1.mtsi?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simona Bigerna, Maria Chiara DErrico, and Paolo Polinori, 2019. "Environmental and Energy Efficiency of EU Electricity Industry: An Almost Spatial Two Stages DEA Approach," The Energy Journal, International Association for Energy Economics, vol. 0(The New E).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Napolitano, Oreste & Foresti, Pasquale & Kounetas, Konstantinos & Spagnolo, Nicola, 2023. "The impact of energy, renewable and CO2 emissions efficiency on countries’ productivity," Energy Economics, Elsevier, vol. 125(C).
    2. Peng, Hui & Lu, Yaobin & Wang, Qunwei, 2023. "How does heterogeneous industrial agglomeration affect the total factor energy efficiency of China's digital economy," Energy, Elsevier, vol. 268(C).
    3. Galeotti, Marzio & Salini, Silvia & Verdolini, Elena, 2020. "Measuring environmental policy stringency: Approaches, validity, and impact on environmental innovation and energy efficiency," Energy Policy, Elsevier, vol. 136(C).
    4. Zhang, Yue-Jun & Cheng, Hao-Sen, 2021. "The impact mechanism of the ETS on CO2 emissions from the service sector: Evidence from Beijing and Shanghai," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    5. Simona Bigerna & Maria Chiara D’Errico & Paolo Polinori, 2022. "Sustainable Power Generation in Europe: A Panel Data Analysis of the Effects of Market and Environmental Regulations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 445-479, October.
    6. Bigerna, Simona & D'Errico, Maria Chiara & Polinori, Paolo, 2020. "Heterogeneous impacts of regulatory policy stringency on the EU electricity Industry:A Bayesian shrinkage dynamic analysis," Energy Policy, Elsevier, vol. 142(C).
    7. Anna Misztal & Magdalena Kowalska & Anita Fajczak-Kowalska, 2022. "The Impact of Economic Factors on the Sustainable Development of Energy Enterprises: The Case of Bulgaria, Czechia, Estonia and Poland," Energies, MDPI, vol. 15(18), pages 1-19, September.
    8. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim J.S., 2024. "Can operational efficiency in the Portuguese electricity sector be improved? Yes, but..," Energy Policy, Elsevier, vol. 190(C).
    9. Xiangyu Hua & Haiping Lv & Xiangrong Jin, 2021. "Research on High-Quality Development Efficiency and Total Factor Productivity of Regional Economies in China," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    10. Hassan Ali & Han Phoumin & Beni Suryadi & Aitazaz A. Farooque & Raziq Yaqub, 2022. "Assessing ASEAN’s Liberalized Electricity Markets: The Case of Singapore and the Philippines," Sustainability, MDPI, vol. 14(18), pages 1-24, September.
    11. Lee, Boon L. & Wilson, Clevo & Simshauser, Paul & Majiwa, Eucabeth, 2021. "Deregulation, efficiency and policy determination: An analysis of Australia's electricity distribution sector," Energy Economics, Elsevier, vol. 98(C).
    12. Xiaosheng Li & Yunxia Shu & Xin Jin, 2022. "Environmental regulation, carbon emissions and green total factor productivity: a case study of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2577-2597, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:45:y:2024:i:1:p:149-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.