IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v161y2018icp325-336.html
   My bibliography  Save this article

Environmental efficiency evaluation of thermal power generation in China based on a slack-based endogenous directional distance function model

Author

Listed:
  • Song, Malin
  • Wang, Jianlin

Abstract

This study proposes a slack-based endogenous directional distance function model (SBEDDF) to assess the environmental impact of China’s power generation industry. By selecting directional vectors according to slack values and endowing them with norms, this model guarantees that unit invariance and efficiency value measures are suitable for economic interpretation. The results of this study indicate that the environmental efficiency of China’s power generation industry is low and varies considerably from one region to another. The optimal approach to reduction of emissions is unique for each region. For example, in Guangxi, reducing SO2 emissions is the priority, while in Shanxi, NOx emissions need to be targeted. The results of the Tobit regression analysis indicate that the power function of unit elasticity fits the environmental Kuznets curve of the power industry well. These results demonstrate that it is prudent for environmental administrators to tailor emission reduction standards and incentive policies to the prevailing circumstances in a region.

Suggested Citation

  • Song, Malin & Wang, Jianlin, 2018. "Environmental efficiency evaluation of thermal power generation in China based on a slack-based endogenous directional distance function model," Energy, Elsevier, vol. 161(C), pages 325-336.
  • Handle: RePEc:eee:energy:v:161:y:2018:i:c:p:325-336
    DOI: 10.1016/j.energy.2018.07.158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218314555
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency: Some clarifications," European Journal of Operational Research, Elsevier, vol. 206(3), pages 702-702, November.
    2. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    3. Atkinson, Scott E. & Tsionas, Mike G., 2016. "Directional distance functions: Optimal endogenous directions," Journal of Econometrics, Elsevier, vol. 190(2), pages 301-314.
    4. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    5. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    6. He, Jie & Wang, Hua, 2012. "Economic structure, development policy and environmental quality: An empirical analysis of environmental Kuznets curves with Chinese municipal data," Ecological Economics, Elsevier, vol. 76(C), pages 49-59.
    7. Donglan Zha & Dequn Zhou, 2009. "Environmental Efficiency analysis of China industry sector: a directional distance function approach," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 32(1/2), pages 68-82.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali, 2015. "A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs," Omega, Elsevier, vol. 51(C), pages 29-37.
    10. Rezek, Jon P. & Rogers, Kevin, 2008. "Decomposing the CO2-income tradeoff: an output distance function approach," Environment and Development Economics, Cambridge University Press, vol. 13(4), pages 457-473, August.
    11. Sandeep H. Patel & Thomas C. Pinckney & William K. Jaeger, 1995. "Smallholder Wood Production and Population Pressure in East Africa: Evidence of an Environmental Kuznets Curve?," Land Economics, University of Wisconsin Press, vol. 71(4), pages 516-530.
    12. Bimonte, Salvatore, 2002. "Information access, income distribution, and the Environmental Kuznets Curve," Ecological Economics, Elsevier, vol. 41(1), pages 145-156, April.
    13. Simar, Léopold & Vanhems, Anne, 2012. "Probabilistic characterization of directional distances and their robust versions," Journal of Econometrics, Elsevier, vol. 166(2), pages 342-354.
    14. Zhou, Yan & Xing, Xinpeng & Fang, Kuangnan & Liang, Dapeng & Xu, Chunlin, 2013. "Environmental efficiency analysis of power industry in China based on an entropy SBM model," Energy Policy, Elsevier, vol. 57(C), pages 68-75.
    15. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    16. Richard Schmalensee & Thomas M. Stoker & Ruth A. Judson, 1998. "World Carbon Dioxide Emissions: 1950-2050," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 15-27, February.
    17. Li, Hong-Zhou & Tian, Xian-Liang & Zou, Tao, 2015. "Impact analysis of coal-electricity pricing linkage scheme in China based on stochastic frontier cost function," Applied Energy, Elsevier, vol. 151(C), pages 296-305.
    18. Alchian, Armen A & Demsetz, Harold, 1972. "Production , Information Costs, and Economic Organization," American Economic Review, American Economic Association, vol. 62(5), pages 777-795, December.
    19. Kaneko, Shinji & Fujii, Hidemichi & Sawazu, Naoya & Fujikura, Ryo, 2010. "Financial allocation strategy for the regional pollution abatement cost of reducing sulfur dioxide emissions in the thermal power sector in China," Energy Policy, Elsevier, vol. 38(5), pages 2131-2141, May.
    20. Panayotou, Theodore, 1997. "Demystifying the environmental Kuznets curve: turning a black box into a policy tool," Environment and Development Economics, Cambridge University Press, vol. 2(4), pages 465-484, November.
    21. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    22. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil," Energy, Elsevier, vol. 36(5), pages 2450-2458.
    23. Färe, Rolf & Pasurka, Carl & Vardanyan, Michael, 2017. "On endogenizing direction vectors in parametric directional distance function-based models," European Journal of Operational Research, Elsevier, vol. 262(1), pages 361-369.
    24. Lau, Lin-Sea & Choong, Chee-Keong & Eng, Yoke-Kee, 2014. "Investigation of the environmental Kuznets curve for carbon emissions in Malaysia: Do foreign direct investment and trade matter?," Energy Policy, Elsevier, vol. 68(C), pages 490-497.
    25. Lam, Pun-Lee & Shiu, Alice, 2001. "A data envelopment analysis of the efficiency of China's thermal power generation," Utilities Policy, Elsevier, vol. 10(2), pages 75-83, June.
    26. Fare, Rolf, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    27. Färe, Rolf & Fukuyama, Hirofumi & Grosskopf, Shawna & Zelenyuk, Valentin, 2015. "Decomposing profit efficiency using a slack-based directional distance function," European Journal of Operational Research, Elsevier, vol. 247(1), pages 335-337.
    28. Kristrom, Bengt & Lundgren, Tommy, 2005. "Swedish CO2-emissions 1900-2010: an exploratory note," Energy Policy, Elsevier, vol. 33(9), pages 1223-1230, June.
    29. Jose Zofio & Jesus Pastor & Juan Aparicio, 2013. "The directional profit efficiency measure: on why profit inefficiency is either technical or allocative," Journal of Productivity Analysis, Springer, vol. 40(3), pages 257-266, December.
    30. Barros, Carlos Pestana & Managi, Shunsuke & Matousek, Roman, 2012. "The technical efficiency of the Japanese banks: Non-radial directional performance measurement with undesirable output," Omega, Elsevier, vol. 40(1), pages 1-8, January.
    31. Lee, Chia-Yen, 2014. "Meta-data envelopment analysis: Finding a direction towards marginal profit maximization," European Journal of Operational Research, Elsevier, vol. 237(1), pages 207-216.
    32. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    33. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    34. Guoping Mei & Jingyi Gan & Ning Zhang, 2015. "Metafrontier Environmental Efficiency for China’s Regions: A Slack-Based Efficiency Measure," Sustainability, MDPI, vol. 7(4), pages 1-18, April.
    35. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
    36. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    37. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    38. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    39. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    40. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    41. AkbostancI, Elif & Türüt-AsIk, Serap & Tunç, G. Ipek, 2009. "The relationship between income and environment in Turkey: Is there an environmental Kuznets curve?," Energy Policy, Elsevier, vol. 37(3), pages 861-867, March.
    42. Tseng, Ming-Lang & Lim, Ming K. & Wong, Wai-Peng & Chen, Yi-Chun & Zhan, Yuanzhu, 2018. "A framework for evaluating the performance of sustainable service supply chain management under uncertainty," International Journal of Production Economics, Elsevier, vol. 195(C), pages 359-372.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    2. Arabmaldar, Aliasghar & Sahoo, Biresh K. & Ghiyasi, Mojtaba, 2023. "A generalized robust data envelopment analysis model based on directional distance function," European Journal of Operational Research, Elsevier, vol. 311(2), pages 617-632.
    3. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    4. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    5. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali, 2015. "A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs," Omega, Elsevier, vol. 51(C), pages 29-37.
    6. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    7. Malin Song & Jianlin Wang & Jiajia Zhao & Tomas Baležentis & Zhiyang Shen, 2020. "Production and safety efficiency evaluation in Chinese coal mines: accident deaths as undesirable output," Annals of Operations Research, Springer, vol. 291(1), pages 827-845, August.
    8. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    9. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    10. Deng, Zhongqi & Jiang, Nan & Pang, Ruizhi, 2021. "Factor-analysis-based directional distance function: The case of New Zealand hospitals," Omega, Elsevier, vol. 98(C).
    11. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    12. Liu, Guangtian & Wang, Bing & Zhang, Ning, 2016. "A coin has two sides: Which one is driving China’s green TFP growth?," Economic Systems, Elsevier, vol. 40(3), pages 481-498.
    13. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    14. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    15. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    16. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    17. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Hsu, Shih-Hsun & Managi, Shunsuke, 2015. "The enhanced Russell-based directional distance measure with undesirable outputs: Numerical example considering CO2 emissions," Omega, Elsevier, vol. 53(C), pages 30-40.
    18. Färe, Rolf & Fukuyama, Hirofumi & Grosskopf, Shawna & Zelenyuk, Valentin, 2016. "Cost decompositions and the efficient subset," Omega, Elsevier, vol. 62(C), pages 123-130.
    19. Ying Li & Yung‐ho Chiu & Tai‐Yu Lin & Hongyi Cen & Yabin Liu, 2021. "Evaluation of natural disaster treatment efficiency in 27 Chinese provinces," Natural Resources Forum, Blackwell Publishing, vol. 45(3), pages 256-288, August.
    20. Christian Hernández-Guedes & Jorge V Pérez-Rodríguez & Casiano Manrique-de-Lara-Peñate, 2024. "Input inefficiencies in the hotel industry. A non-radial directional performance measurement," Tourism Economics, , vol. 30(7), pages 1753-1779, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:161:y:2018:i:c:p:325-336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.