IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v52y2015ipap142-150.html
   My bibliography  Save this article

Dynamic changes in CO2 emission performance of different types of Iranian fossil-fuel power plants

Author

Listed:
  • Nabavieh, Alireza
  • Gholamiangonabadi, Davoud
  • Ahangaran, Ali Asghar

Abstract

In this paper, the MNMCPI (metafrontier non-radial Malmquist CO2 emission performance index) is applied to study the CO2 emission performance of different types of Iranian fossil-fuel power plants during the period of 2007–2012. The MNMCPI has several advantages, including the ability to apply group heterogeneity as well as its decomposability to different components, which facilitates identifying the effective factors on performance. The results indicate that the gas-fired and combined cycle power plants have a constant trend and show little progression, while the steam power plants have the worst performance. This is due to the factors such as lack of specified regulations about the type of consumed fuels. Moreover, there does not exist any technological leadership among the fossil-fuel power plants. It was also found that even by considering these conditions, proper resource management and utilizing suitable benchmarks can reduce the current level of CO2 emissions in the power plants up to 25%.

Suggested Citation

  • Nabavieh, Alireza & Gholamiangonabadi, Davoud & Ahangaran, Ali Asghar, 2015. "Dynamic changes in CO2 emission performance of different types of Iranian fossil-fuel power plants," Energy Economics, Elsevier, vol. 52(PA), pages 142-150.
  • Handle: RePEc:eee:eneeco:v:52:y:2015:i:pa:p:142-150
    DOI: 10.1016/j.eneco.2015.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988315002819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2015.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fallahi, Alireza & Ebrahimi, Reza & Ghaderi, S.F., 2011. "Measuring efficiency and productivity change in power electric generation management companies by using data envelopment analysis: A case study," Energy, Elsevier, vol. 36(11), pages 6398-6405.
    2. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency: Some clarifications," European Journal of Operational Research, Elsevier, vol. 206(3), pages 702-702, November.
    3. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    4. Ang, B. W. & Choi, Ki-Hong, 2002. "Boundary problem in carbon emission decomposition," Energy Policy, Elsevier, vol. 30(13), pages 1201-1205, October.
    5. Vaninsky, Alexander, 2006. "Efficiency of electric power generation in the United States: Analysis and forecast based on data envelopment analysis," Energy Economics, Elsevier, vol. 28(3), pages 326-338, May.
    6. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    7. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
    8. Henry Tulkens & Philippe Eeckaut, 2006. "Nonparametric Efficiency, Progress and Regress Measures For Panel Data: Methodological Aspects," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 395-429, Springer.
    9. Barros, Carlos Pestana & Managi, Shunsuke & Matousek, Roman, 2012. "The technical efficiency of the Japanese banks: Non-radial directional performance measurement with undesirable output," Omega, Elsevier, vol. 40(1), pages 1-8, January.
    10. R. Ramanathan, 2002. "Combining indicators of energy consumption and CO 2 emissions: a cross-country comparison," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 17(3), pages 214-227.
    11. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    12. Simar, Leopold & Wilson, Paul W., 1999. "Estimating and bootstrapping Malmquist indices," European Journal of Operational Research, Elsevier, vol. 115(3), pages 459-471, June.
    13. Zhang, Ning & Zhou, Peng & Kung, Chih-Chun, 2015. "Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 584-593.
    14. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    15. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    16. Hirofumi Fukuyama & Yuichiro Yoshida & Shunsuke Managi, 2011. "Modal choice between air and rail: a social efficiency benchmarking analysis that considers CO 2 emissions," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(2), pages 89-102, June.
    17. Nakano, Makiko & Managi, Shunsuke, 2008. "Regulatory reforms and productivity: An empirical analysis of the Japanese electricity industry," Energy Policy, Elsevier, vol. 36(1), pages 201-209, January.
    18. Dong-hyun Oh & Jeong-dong Lee, 2010. "A metafrontier approach for measuring Malmquist productivity index," Empirical Economics, Springer, vol. 38(1), pages 47-64, February.
    19. Oh, Dong-hyun, 2010. "A metafrontier approach for measuring an environmentally sensitive productivity growth index," Energy Economics, Elsevier, vol. 32(1), pages 146-157, January.
    20. Chen, Po-Chi & Yu, Ming-Miin & Chang, Ching-Cheng & Managi, Shunsuke, 2014. "Non-Radial Directional Performance Measurement with Undesirable Outputs," MPRA Paper 57189, University Library of Munich, Germany.
    21. Mazandarani, A. & Mahlia, T.M.I. & Chong, W.T. & Moghavvemi, M., 2011. "Fuel consumption and emission prediction by Iranian power plants until 2025," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1575-1592, April.
    22. Zhang, Ning & Wei, Xiao, 2015. "Dynamic total factor carbon emissions performance changes in the Chinese transportation industry," Applied Energy, Elsevier, vol. 146(C), pages 409-420.
    23. Liu, C.H. & Lin, Sue J. & Lewis, Charles, 2010. "Evaluation of thermal power plant operational performance in Taiwan by data envelopment analysis," Energy Policy, Elsevier, vol. 38(2), pages 1049-1058, February.
    24. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    25. Barros, Carlos Pestana & Peypoch, Nicolas, 2008. "Technical efficiency of thermoelectric power plants," Energy Economics, Elsevier, vol. 30(6), pages 3118-3127, November.
    26. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    27. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    28. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    29. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    30. Kwon, Tae-Hyeong, 2005. "Decomposition of factors determining the trend of CO2 emissions from car travel in Great Britain (1970-2000)," Ecological Economics, Elsevier, vol. 53(2), pages 261-275, April.
    31. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    32. Sarıca, Kemal & Or, Ilhan, 2007. "Efficiency assessment of Turkish power plants using data envelopment analysis," Energy, Elsevier, vol. 32(8), pages 1484-1499.
    33. Ang, B.W. & Zhou, P. & Tay, L.P., 2011. "Potential for reducing global carbon emissions from electricity production--A benchmarking analysis," Energy Policy, Elsevier, vol. 39(5), pages 2482-2489, May.
    34. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sai, Rockson & Lin, Boqiang, 2022. "Productivity assessment of power generation in Kenya: What are the impacts?," Energy, Elsevier, vol. 254(PA).
    2. Chen, Weidong & Geng, Wenxin, 2017. "Fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance considering renewable energy input," Energy, Elsevier, vol. 120(C), pages 283-292.
    3. Zhonghua Cheng & Xiai Shi, 2018. "Can Industrial Structural Adjustment Improve the Total-Factor Carbon Emission Performance in China?," IJERPH, MDPI, vol. 15(10), pages 1-20, October.
    4. Lin, Boqiang & Sai, Rockson, 2021. "A multi factor Malmquist CO2emission performance indices: Evidence from Sub Saharan African public thermal power plants," Energy, Elsevier, vol. 223(C).
    5. Sun, Chuanwang & Liu, Xiaohong & Li, Aijun, 2018. "Measuring unified efficiency of Chinese fossil fuel power plants: Intermediate approach combined with group heterogeneity and window analysis," Energy Policy, Elsevier, vol. 123(C), pages 8-18.
    6. Lin, Boqiang & Sai, Rockson, 2022. "Towards low carbon economy: Performance of electricity generation and emission reduction potential in Africa," Energy, Elsevier, vol. 251(C).
    7. Lin, Boqiang & Sai, Rockson, 2022. "Sustainable transitioning in Africa: A historical evaluation of energy productivity changes and determinants," Energy, Elsevier, vol. 250(C).
    8. Jin, S.W. & Li, Y.P. & Nie, S. & Sun, J., 2017. "The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 467-480.
    9. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & Sai, Rockson, 2021. "A multi factor Malmquist CO2emission performance indices: Evidence from Sub Saharan African public thermal power plants," Energy, Elsevier, vol. 223(C).
    2. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    3. Yao, Xin & Guo, Chengwen & Shao, Shuai & Jiang, Zhujun, 2016. "Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach," Applied Energy, Elsevier, vol. 184(C), pages 1142-1153.
    4. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    5. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    6. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
    7. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    8. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2017. "Non-radial metafrontier approach to identify carbon emission performance and intensity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 664-672.
    9. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    10. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    11. Cheng, Zhonghua & Li, Lianshui & Liu, Jun & Zhang, Huiming, 2018. "Total-factor carbon emission efficiency of China's provincial industrial sector and its dynamic evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 330-339.
    12. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    13. Zhang, Ning & Kong, Fanbin & Choi, Yongrok, 2014. "Measuring sustainability performance for China: A sequential generalized directional distance function approach," Economic Modelling, Elsevier, vol. 41(C), pages 392-397.
    14. Zhang, Ning & Wang, Bing & Chen, Zhongfei, 2016. "Carbon emissions reductions and technology gaps in the world's factory, 1990–2012," Energy Policy, Elsevier, vol. 91(C), pages 28-37.
    15. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    16. Lin, Boqiang & Bai, Rui, 2020. "Dynamic energy performance evaluation of Chinese textile industry," Energy, Elsevier, vol. 199(C).
    17. Liu, Guangtian & Wang, Bing & Zhang, Ning, 2016. "A coin has two sides: Which one is driving China’s green TFP growth?," Economic Systems, Elsevier, vol. 40(3), pages 481-498.
    18. Lin, Boqiang & Sai, Rockson, 2022. "Towards low carbon economy: Performance of electricity generation and emission reduction potential in Africa," Energy, Elsevier, vol. 251(C).
    19. Zhang, Yijun & Song, Yi, 2020. "Unified efficiency of coal mining enterprises in China: An analysis based on meta-frontier non-radial directional distance functions," Resources Policy, Elsevier, vol. 65(C).
    20. Zhang, Ning & Wang, Bing, 2015. "A deterministic parametric metafrontier Luenberger indicator for measuring environmentally-sensitive productivity growth: A Korean fossil-fuel power case," Energy Economics, Elsevier, vol. 51(C), pages 88-98.

    More about this item

    Keywords

    Non-radial directional distance function; CO2 emission; Performance; Power plant;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • L98 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Government Policy
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:52:y:2015:i:pa:p:142-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.