IDEAS home Printed from
   My bibliography  Save this article

Fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance considering renewable energy input


  • Chen, Weidong
  • Geng, Wenxin


Energy environmental and non-radial Malmquist indexes are proposed employing a non-radial directional distance function to evaluate fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance internationally. Renewable energy is also proposed as an essential energy input for the models. An empirical study of 26 Organization for Economic Cooperation and Development countries and Brazil, Russia, India, and China was performed, with the following outcomes: fossil energy saving and CO2 emissions reduction performance is underestimated for most countries, regardless of renewable energy input, however, this underestimation has little influence on performance rankings; there is no significant correlation between the proportion of renewable energy consumption and fossil energy saving and CO2 emissions reduction performance; the 30 countries can be divided into four categories with corresponding specific strategies for energy saving and emissions reduction; Generally, technological progress and efficiency improvement are out of sync, mainly because of the difficulty to achieve the efficiency improvements.

Suggested Citation

  • Chen, Weidong & Geng, Wenxin, 2017. "Fossil energy saving and CO2 emissions reduction performance, and dynamic change in performance considering renewable energy input," Energy, Elsevier, vol. 120(C), pages 283-292.
  • Handle: RePEc:eee:energy:v:120:y:2017:i:c:p:283-292
    DOI: 10.1016/

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Li, Lan-Bing & Hu, Jin-Li, 2012. "Ecological total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 46(C), pages 216-224.
    2. Chen, Shiyi & Golley, Jane, 2014. "‘Green’ productivity growth in China's industrial economy," Energy Economics, Elsevier, vol. 44(C), pages 89-98.
    3. Aparicio, Juan & Pastor, Jesus T. & Zofio, Jose L., 2013. "On the inconsistency of the Malmquist–Luenberger index," European Journal of Operational Research, Elsevier, vol. 229(3), pages 738-742.
    4. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    5. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    6. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    7. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    8. Li, Ke & Lin, Boqiang, 2015. "The improvement gap in energy intensity: Analysis of China's thirty provincial regions using the improved DEA (data envelopment analysis) model," Energy, Elsevier, vol. 84(C), pages 589-599.
    9. Duan, Na & Guo, Jun-Peng & Xie, Bai-Chen, 2016. "Is there a difference between the energy and CO2 emission performance for China’s thermal power industry? A bootstrapped directional distance function approach," Applied Energy, Elsevier, vol. 162(C), pages 1552-1563.
    10. Nabavieh, Alireza & Gholamiangonabadi, Davoud & Ahangaran, Ali Asghar, 2015. "Dynamic changes in CO2 emission performance of different types of Iranian fossil-fuel power plants," Energy Economics, Elsevier, vol. 52(PA), pages 142-150.
    11. Zhang, Ning & Wang, Bing & Liu, Zhu, 2016. "Carbon emissions dynamics, efficiency gains, and technological innovation in China's industrial sectors," Energy, Elsevier, vol. 99(C), pages 10-19.
    12. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    13. Li, Ke & Lin, Boqiang, 2015. "The efficiency improvement potential for coal, oil and electricity in China's manufacturing sectors," Energy, Elsevier, vol. 86(C), pages 403-413.
    14. Nabavi-Pelesaraei, Ashkan & Hosseinzadeh-Bandbafha, Homa & Qasemi-Kordkheili, Peyman & Kouchaki-Penchah, Hamed & Riahi-Dorcheh, Farshid, 2016. "Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production," Energy, Elsevier, vol. 103(C), pages 672-678.
    15. Goto, Mika & Otsuka, Akihiro & Sueyoshi, Toshiyuki, 2014. "DEA (Data Envelopment Analysis) assessment of operational and environmental efficiencies on Japanese regional industries," Energy, Elsevier, vol. 66(C), pages 535-549.
    16. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    17. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
    18. Chang, Ming-Chung, 2013. "A comment on the calculation of the total-factor energy efficiency (TFEE) index," Energy Policy, Elsevier, vol. 53(C), pages 500-504.
    19. Zhang, Ning & Choi, Yongrok, 2013. "A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea," Energy Policy, Elsevier, vol. 62(C), pages 324-332.
    20. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    21. Xie, Bai-Chen & Shang, Li-Feng & Yang, Si-Bo & Yi, Bo-Wen, 2014. "Dynamic environmental efficiency evaluation of electric power industries: Evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countrie," Energy, Elsevier, vol. 74(C), pages 147-157.
    22. Wang, H. & Zhou, P. & Zhou, D.Q., 2013. "Scenario-based energy efficiency and productivity in China: A non-radial directional distance function analysis," Energy Economics, Elsevier, vol. 40(C), pages 795-803.
    23. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    24. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    25. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali, 2015. "A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs," Omega, Elsevier, vol. 51(C), pages 29-37.
    26. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    27. Özkara, Yücel & Atak, Mehmet, 2015. "Regional total-factor energy efficiency and electricity saving potential of manufacturing industry in Turkey," Energy, Elsevier, vol. 93(P1), pages 495-510.
    28. Wang, Qunwei & Su, Bin & Zhou, Peng & Chiu, Ching-Ren, 2016. "Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach," Energy Economics, Elsevier, vol. 56(C), pages 475-482.
    29. Wang, Zhaohua & Feng, Chao, 2015. "A performance evaluation of the energy, environmental, and economic efficiency and productivity in China: An application of global data envelopment analysis," Applied Energy, Elsevier, vol. 147(C), pages 617-626.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, Open Access Journal, vol. 11(8), pages 1-21, August.
    2. Yang, Xiaohu & Guo, Zengxu & Liu, Yanhua & Jin, Liwen & He, Ya-Ling, 2019. "Effect of inclination on the thermal response of composite phase change materials for thermal energy storage," Applied Energy, Elsevier, vol. 238(C), pages 22-33.
    3. Xie, Qiaofeng & Wen, Haocheng & Li, Weihong & Ji, Zifei & Wang, Bing & Wolanski, Piotr, 2018. "Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition," Energy, Elsevier, vol. 151(C), pages 408-419.
    4. Ma, Ding & Fei, Rilong & Yu, Yongsheng, 2019. "How government regulation impacts on energy and CO2 emissions performance in China's mining industry," Resources Policy, Elsevier, vol. 62(C), pages 651-663.
    5. Yang Zhou & Jintao Fu & Ying Kong & Rui Wu, 2018. "How Foreign Direct Investment Influences Carbon Emissions, Based on the Empirical Analysis of Chinese Urban Data," Sustainability, MDPI, Open Access Journal, vol. 10(7), pages 1-19, June.
    6. Zhang, Pengpeng & Zhang, Lixiao & Tian, Xin & Hao, Yan & Wang, Changbo, 2018. "Urban energy transition in China: Insights from trends, socioeconomic drivers, and environmental impacts of Beijing," Energy Policy, Elsevier, vol. 117(C), pages 173-183.
    7. Wei, Yigang & Li, Yan & Wu, Meiyu & Li, Yingbo, 2019. "The decomposition of total-factor CO2 emission efficiency of 97 contracting countries in Paris Agreement," Energy Economics, Elsevier, vol. 78(C), pages 365-378.
    8. Attila Bai & József Popp & Károly Pető & Irén Szőke & Mónika Harangi-Rákos & Zoltán Gabnai, 2017. "The Significance of Forests and Algae in CO 2 Balance: A Hungarian Case Study," Sustainability, MDPI, Open Access Journal, vol. 9(5), pages 1-24, May.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:120:y:2017:i:c:p:283-292. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.