IDEAS home Printed from https://ideas.repec.org/a/kap/empiri/v52y2025i3d10.1007_s10663-025-09644-4.html
   My bibliography  Save this article

Macroeconomic drivers of CO2 emissions: a panel estimation for African countries

Author

Listed:
  • Samuel Owusu

    (The New School for Social Research)

Abstract

This paper analyses the long-run and causal linkages between macroeconomic variables and CO2 emissions at both panel and country levels for four African countries with the most production-based CO2 emissions from 1990 to 2021. The study employs first-generation panel unit root tests, structural break tests, cointegration tests, cointegration estimation methods, causality tests, and variance decomposition tests. The results of three cointegration tests showed a long-run equilibrium relationship between the variables. The coefficients obtained from the dynamic ordinary least squares (DOLS) and fully modified least squares (FMOLS) estimators showed a significant positive relationship between CO2 emissions and fossil fuel consumption, energy import, energy intensity, population, and GDP. The findings indicated a significant negative relationship between CO2 emissions and renewable energy consumption in South Africa and Algeria. The coefficient of the spatial spillover variable indicates a positive spatial spillover, where CO2 emissions from neighboring countries contribute to increased emissions in the local country. The study supports the environmental Kuznets curve (EKC) hypothesis, establishing an inverted U-shaped relationship between GDP per capita and CO2 emissions among these countries. The findings of causality tests show unidirectional short-run Granger causality from fossil fuel consumption to CO2 emissions and GDP. Finally, the result of the variance decomposition showed that GDP and fossil fuel consumption are the major contributors to CO2 emissions among these countries. The result of this study provides important insights for national and international policymakers pursuing climate mitigation and economic development projects in Africa.

Suggested Citation

  • Samuel Owusu, 2025. "Macroeconomic drivers of CO2 emissions: a panel estimation for African countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 52(3), pages 613-650, August.
  • Handle: RePEc:kap:empiri:v:52:y:2025:i:3:d:10.1007_s10663-025-09644-4
    DOI: 10.1007/s10663-025-09644-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10663-025-09644-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10663-025-09644-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Park, Joon Y, 1992. "Canonical Cointegrating Regressions," Econometrica, Econometric Society, vol. 60(1), pages 119-143, January.
    2. Jan Ditzen & Yiannis Karavias & Joakim Westerlund, 2025. "Testing and estimating structural breaks in time series and panel data in Stata," Stata Journal, StataCorp LLC, vol. 25(3), pages 526-560, September.
    3. P. J. Dawson, 1997. "On testing Kuznets' economic growth hypothesis," Applied Economics Letters, Taylor & Francis Journals, vol. 4(7), pages 409-410.
    4. Robert Engle & Clive Granger, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    5. Tamazian, Artur & Chousa, Juan Piñeiro & Vadlamannati, Krishna Chaitanya, 2009. "Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries," Energy Policy, Elsevier, vol. 37(1), pages 246-253, January.
    6. Jian Hou & Jinghua Wang & Jiancheng Chen & Fang He, 2020. "Does urban haze pollution inversely drive down the energy intensity? A perspective from environmental regulation," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(1), pages 343-351, January.
    7. Lee, Jung Wan & Brahmasrene, Tantatape, 2013. "Investigating the influence of tourism on economic growth and carbon emissions: Evidence from panel analysis of the European Union," Tourism Management, Elsevier, vol. 38(C), pages 69-76.
    8. Jean Pierre Namahoro & Qiaosheng Wu & Haijun Xiao & Na Zhou, 2021. "The Impact of Renewable Energy, Economic and Population Growth on CO 2 Emissions in the East African Region: Evidence from Common Correlated Effect Means Group and Asymmetric Analysis," Energies, MDPI, vol. 14(2), pages 1-21, January.
    9. Kirsten L. Ludi & Marc Ground, 2006. "Investigating the Bank-Lending Channel in South Africa: A VAR Approach," Working Papers 200604, University of Pretoria, Department of Economics.
    10. Myeong Hwan Kim & Nodir Adilov, 2012. "The lesser of two evils: an empirical investigation of foreign direct investment-pollution tradeoff," Applied Economics, Taylor & Francis Journals, vol. 44(20), pages 2597-2606, July.
    11. Javorcik Beata Smarzynska & Wei Shang-Jin, 2003. "Pollution Havens and Foreign Direct Investment: Dirty Secret or Popular Myth?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 3(2), pages 1-34, December.
    12. Pengyu Chen & Yiannis Karavias & Elias Tzavalis, 2022. "Panel unit-root tests with structural breaks," Stata Journal, StataCorp LLC, vol. 22(3), pages 664-678, September.
    13. Ramphul Ohlan, 2015. "The impact of population density, energy consumption, economic growth and trade openness on CO 2 emissions in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1409-1428, November.
    14. Bjørnar Karlsen Kivedal, 2023. "Long run non-linearity in CO2 emissions: the I(2) cointegration model and the environmental Kuznets curve," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(4), pages 899-931, November.
    15. Zafar, Muhammad Wasif & Shahbaz, Muhammad & Sinha, Avik & Sengupta, Tuhin & Qin, Quande, 2020. "How Renewable Energy Consumption Contribute to Environmental Quality? The Role of Education in OECD Countries," MPRA Paper 100259, University Library of Munich, Germany, revised 08 May 2020.
    16. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    17. Gregory, Allan W. & Hansen, Bruce E., 1996. "Residual-based tests for cointegration in models with regime shifts," Journal of Econometrics, Elsevier, vol. 70(1), pages 99-126, January.
    18. Dumitrescu, Elena-Ivona & Hurlin, Christophe, 2012. "Testing for Granger non-causality in heterogeneous panels," Economic Modelling, Elsevier, vol. 29(4), pages 1450-1460.
    19. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    20. Cheung, Yin-Wong & Lai, Kon S, 1993. "Finite-Sample Sizes of Johansen's Likelihood Ration Tests for Conintegration," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 55(3), pages 313-328, August.
    21. Nan, Shijing & Huo, Yuchen & You, Wanhai & Guo, Yawei, 2022. "Globalization spatial spillover effects and carbon emissions: What is the role of economic complexity?," Energy Economics, Elsevier, vol. 112(C).
    22. Yasir Khan & Hana Oubaih & Taimoor Hassan, 2024. "Assessing the Role of Energy Depletion and Energy Import with Carbon Dioxide Emissions in Belt and Road Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(2), pages 7852-7872, June.
    23. Karavias, Yiannis & Tzavalis, Elias, 2014. "Testing for unit roots in short panels allowing for a structural break," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 391-407.
    24. Joysri Acharyya, 2009. "Fdi, Growth And The Environment: Evidence From India On Co2 Emission During The Last Two Decades," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 34(1), pages 43-58, June.
    25. Shahbaz, muhammad & Solarin, Sakiru Adebola & Sbia, Rashid & Bibi, Sadia, 2015. "Does Energy Intensity Contribute to CO2 Emissions? A Trivariate Analysis in Selected African Countries," MPRA Paper 64335, University Library of Munich, Germany, revised 19 Mar 2015.
    26. Hanif, Imran & Faraz Raza, Syed Muhammad & Gago-de-Santos, Pilar & Abbas, Qaiser, 2019. "Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: Some empirical evidence," Energy, Elsevier, vol. 171(C), pages 493-501.
    27. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Sinha, Avik & Gedikli, Ayfer & Hou, Fujun, 2019. "The role of stock market and banking sector development, and renewable energy consumption in carbon emissions: Insights from G-7 and N-11 countries," Resources Policy, Elsevier, vol. 62(C), pages 427-436.
    28. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    29. Kasman, Adnan & Duman, Yavuz Selman, 2015. "CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and candidate countries: A panel data analysis," Economic Modelling, Elsevier, vol. 44(C), pages 97-103.
    30. Zhoumu Yang & Jingjing Cai & Yun Lu & Bin Zhang, 2022. "The Impact of Economic Growth, Industrial Transition, and Energy Intensity on Carbon Dioxide Emissions in China," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    31. M. Hashem Pesaran, 2015. "Testing Weak Cross-Sectional Dependence in Large Panels," Econometric Reviews, Taylor & Francis Journals, vol. 34(6-10), pages 1089-1117, December.
    32. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    33. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    34. Sugiawan, Yogi & Managi, Shunsuke, 2016. "The environmental Kuznets curve in Indonesia: Exploring the potential of renewable energy," Energy Policy, Elsevier, vol. 98(C), pages 187-198.
    35. Greiner, Alfred & Gruene, Lars & Semmler, Willi, 2014. "Economic growth and the transition from non-renewable to renewable energy," Environment and Development Economics, Cambridge University Press, vol. 19(4), pages 417-439, August.
    36. Hassan Qudrat-Ullah & Chinedu Miracle Nevo, 2022. "Analysis of the Dynamic Relationships among Renewable Energy Consumption, Economic Growth, Financial Development, and Carbon Dioxide Emission in Five Sub-Saharan African Countries," Energies, MDPI, vol. 15(16), pages 1-19, August.
    37. Bernur Acikgoz & Anthony Amoah & Mine Yılmazer, 2016. "Economic Freedom and Growth: A Panel Cointegration Approach," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 63(5), pages 541-562.
    38. Myeong Hwan Kim & Nodir Adilov, 2012. "The lesser of two evils: an empirical investigation of foreign direct investment-pollution tradeoff," Applied Economics, Taylor & Francis Journals, vol. 44(20), pages 2597-2606, July.
    39. repec:bla:obuest:v:61:y:1999:i:0:p:631-52 is not listed on IDEAS
    40. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    41. Danish & Recep Ulucak & Salah‐Ud‐Din Khan, 2020. "Relationship between energy intensity and CO2 emissions: Does economic policy matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1457-1464, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vo, Duc Hong & Vo, Anh The & Ho, Chi Minh & Nguyen, Ha Minh, 2020. "The role of renewable energy, alternative and nuclear energy in mitigating carbon emissions in the CPTPP countries," Renewable Energy, Elsevier, vol. 161(C), pages 278-292.
    2. Hasan, Md. Bokhtiar & Wieloch, Justyna & Ali, Md. Sumon & Zikovic, Sasa & Uddin, Gazi Salah, 2023. "A new answer to the old question of the environmental Kuznets Curve (EKC). Does it work for BRICS countries?," Resources Policy, Elsevier, vol. 87(PB).
    3. Usman, Muhammad & Khalid, Khaizran & Mehdi, Muhammad Abuzar, 2021. "What determines environmental deficit in Asia? Embossing the role of renewable and non-renewable energy utilization," Renewable Energy, Elsevier, vol. 168(C), pages 1165-1176.
    4. Shahbaz, Muhammad & Nasreen, Samia & Abbas, Faisal & Anis, Omri, 2015. "Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?," Energy Economics, Elsevier, vol. 51(C), pages 275-287.
    5. Maha Kalai & Hamdi Becha & Kamel Helali, 2024. "Effect of artificial intelligence on economic growth in European countries: a symmetric and asymmetric cointegration based on linear and non-linear ARDL approach," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 13(1), pages 1-37, December.
    6. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    7. Destek, Mehmet Akif, 2019. "Investigation on the role of economic, social and political globalization on environment: Evidence from CEECs," MPRA Paper 106937, University Library of Munich, Germany.
    8. Mohammed Musah, 2023. "Stock market development and environmental quality in EU member countries: a dynamic heterogeneous approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 11153-11187, October.
    9. Sun, Huaping & Samuel, Clottey Attuquaye & Kofi Amissah, Joshua Clifford & Taghizadeh-Hesary, Farhad & Mensah, Isaac Adjei, 2020. "Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries," Energy, Elsevier, vol. 212(C).
    10. Mohammed Musah & Yusheng Kong & Isaac Adjei Mensah & Stephen Kwadwo Antwi & Mary Donkor, 2021. "The connection between urbanization and carbon emissions: a panel evidence from West Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11525-11552, August.
    11. Vo, D.H. & Nguyen, H.M. & Vo, A.T. & McAleer, M.J., 2019. "CO2 Emissions, Energy Consumption and Economic Growth," Econometric Institute Research Papers EI2019-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    12. Alexandra Horobet & Oana Cristina Popovici & Emanuela Zlatea & Lucian Belascu & Dan Gabriel Dumitrescu & Stefania Cristina Curea, 2021. "Long-Run Dynamics of Gas Emissions, Economic Growth, and Low-Carbon Energy in the European Union: The Fostering Effect of FDI and Trade," Energies, MDPI, vol. 14(10), pages 1-30, May.
    13. Zhang, Chuanguo & Zhou, Xiangxue, 2016. "Does foreign direct investment lead to lower CO2 emissions? Evidence from a regional analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 943-951.
    14. Vo, Duc, 2019. "The Impact of Foreign Direct Investment on Environment Degradation: Evidence from Emerging Markets in Asia," MPRA Paper 103292, University Library of Munich, Germany.
    15. Yao Hongxing & Olivier Joseph Abban & Alex Dankyi Boadi, 2021. "Foreign aid and economic growth: Do energy consumption, trade openness and CO2 emissions matter? A DSUR heterogeneous evidence from Africa’s trading blocs," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-25, June.
    16. Anh Hoang To & Dao Thi-Thieu Ha & Ha Minh Nguyen & Duc Hong Vo, 2019. "The Impact of Foreign Direct Investment on Environment Degradation: Evidence from Emerging Markets in Asia," IJERPH, MDPI, vol. 16(9), pages 1-24, May.
    17. Ogali, Oscar I.O. & Okoro, Emeka E. & Olafuyi, Saburi G., 2023. "Assessing consensus on nexus between natural gas consumption and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    18. Jun Wen & Waheed Ali & Jamal Hussain & Nadeem Akhtar Khan & Hadi Hussain & Najabat Ali & Rizwan Akhtar, 2022. "Dynamics between green innovation and environmental quality: new insights into South Asian economies," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 39(2), pages 543-565, July.
    19. Chukwuemeka Chinonso Emenekwe & Robert Ugochukwu Onyeneke & Chinedum Uzoma Nwajiuba & Ifeoma Quinette Anugwa & Obioma Uchenna Emenekwe, 2025. "Determinants of consumption-based and production-based carbon emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 10303-10339, May.
    20. Francisco García-Lillo & Eduardo Sánchez-García & Bartolomé Marco-Lajara & Pedro Seva-Larrosa, 2023. "Renewable Energies and Sustainable Development: A Bibliometric Overview," Energies, MDPI, vol. 16(3), pages 1-22, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:empiri:v:52:y:2025:i:3:d:10.1007_s10663-025-09644-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.