IDEAS home Printed from
   My bibliography  Save this article

Unintended consequences of China’s coal capacity cut policy


  • Shi, Xunpeng
  • Rioux, Bertrand
  • Galkin, Philipp


In early 2016, China introduced additional capacity cut policies to rebalance supply in the coal market to match demand that had been reduced by slow economic growth and strict environmental regulation. Ensuing disruptions to the coal market caused these policies to be revised and, subsequently, discarded as decision makers tried to find a balance between efficient supply, economic and social stability and environmental sustainability. This paper explores the causes of these unintended consequences using an extended version of the KEM-China model. The results reveal that full and partial compliance with the capacity cut policies results in a significant gap between supply and demand. This suggests that implementation of the policy was technically infeasible, even allowing for a significant increase in coal prices and economic costs. Besides, significant differences in coal prices and output profiles are registered across the country. We argue that the heterogeneous nature of the Chinese coal market and policy compliance was a major factor leading to the unintended consequences rendering a single national price benchmark inappropriate as a policy gauge. We propose that the capacity cut policy should be differentiated across regions and even types of coalmines, market approaches would be preferable to the command-and-control instruments, and policy distortions that cause excess capacity should be removed.

Suggested Citation

  • Shi, Xunpeng & Rioux, Bertrand & Galkin, Philipp, 2018. "Unintended consequences of China’s coal capacity cut policy," Energy Policy, Elsevier, vol. 113(C), pages 478-486.
  • Handle: RePEc:eee:enepol:v:113:y:2018:i:c:p:478-486
    DOI: 10.1016/j.enpol.2017.11.034

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Barzel, Yoram, 1970. "Excess Capacity in Monopolistic Competition," Journal of Political Economy, University of Chicago Press, vol. 78(5), pages 1142-1149, Sept.-Oct.
    2. Yuan, Jiahai & Li, Peng & Wang, Yang & Liu, Qian & Shen, Xinyi & Zhang, Kai & Dong, Liansai, 2016. "Coal power overcapacity and investment bubble in China during 2015–2020," Energy Policy, Elsevier, vol. 97(C), pages 136-144.
    3. Pan, Lingying & Liu, Pei & Li, Zheng, 2017. "A system dynamic analysis of China’s oil supply chain: Over-capacity and energy security issues," Applied Energy, Elsevier, vol. 188(C), pages 508-520.
    4. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    5. Xunpeng Shi, 2010. "Restructuring in China's State‐owned Enterprises: Evidence from the Coal Industry," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 18(3), pages 90-105, May.
    6. Xunpeng Shi & R. Grafton, 2010. "Efficiency impacts of the Chinese industrial transition: a quantitative evaluation of reforms in the coal industry," Economic Change and Restructuring, Springer, vol. 43(1), pages 1-19, February.
    7. Lihui Tian & Saul Estrin, 2007. "Debt financing, soft budget constraints, and government ownership," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 15, pages 461-481, July.
    8. Li, Wei & Lu, Can & Ding, Yi & Zhang, Yan-Wu, 2017. "The impacts of policy mix for resolving overcapacity in heavy chemical industry and operating national carbon emission trading market in China," Applied Energy, Elsevier, vol. 204(C), pages 509-524.
    9. Ma, Hengyun & Oxley, Les, 2012. "The emergence and evolution of regional convergence clusters in China's energy markets," Energy Economics, Elsevier, vol. 34(1), pages 82-94.
    10. Shen, Lei & Dai, Tao & Gunson, Aaron James, 2009. "Small-scale mining in China: Assessing recent advances in the policy and regulatory framework," Resources Policy, Elsevier, vol. 34(3), pages 150-157, September.
    11. Huw McKay & Ligang Song, 2010. "China as a Global Manufacturing Powerhouse: Strategic Considerations and Structural Adjustment," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 18(1), pages 1-32, January.
    12. Rioux, Bertrand & Galkin, Philipp & Murphy, Frederic & Pierru, Axel, 2016. "Economic impacts of debottlenecking congestion in the Chinese coal supply chain," Energy Economics, Elsevier, vol. 60(C), pages 387-399.
    13. Zhang, Yanfang & Zhang, Ming & Liu, Yue & Nie, Rui, 2017. "Enterprise investment, local government intervention and coal overcapacity: The case of China," Energy Policy, Elsevier, vol. 101(C), pages 162-169.
    14. Shi, Xunpeng, 2013. "China's small coal mine policy in the 2000s: A case study of trusteeship and consolidation," Resources Policy, Elsevier, vol. 38(4), pages 598-604.
    15. Sheng, Yu & Shi, Xunpeng & Zhang, Dandan, 2014. "Economic growth, regional disparities and energy demand in China," Energy Policy, Elsevier, vol. 71(C), pages 31-39.
    16. Andrews-Speed, Philip & Ma, Guo & Shao, Bingjia & Liao, Chenglin, 2005. "Economic responses to the closure of small-scale coal mines in Chongqing, China," Resources Policy, Elsevier, vol. 30(1), pages 39-54, March.
    17. Joseph E. Stiglitz, 1999. "Toward a General Theory of Wage and Price Rigidities and Economic Fluctuations," American Economic Review, American Economic Association, vol. 89(2), pages 75-80, May.
    18. Haley, Usha C.V. & Haley, George T., 2013. "Subsidies to Chinese Industry: State Capitalism, Business Strategy, and Trade Policy," OUP Catalogue, Oxford University Press, number 9780199773749.
    19. Shen, Lei & Andrews-Speed, Philip, 2001. "Economic analysis of reform policies for small coal mines in China," Resources Policy, Elsevier, vol. 27(4), pages 247-254, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Sun, YongPing & Xue, JinJun & Shi, XunPeng & Wang, KeYing & Qi, ShaoZhou & Wang, Lei & Wang, Cheng, 2019. "A dynamic and continuous allowances allocation methodology for the prevention of carbon leakage: Emission control coefficients," Applied Energy, Elsevier, vol. 236(C), pages 220-230.
    2. Wang, Xiaofei & Liu, Chuangeng & Chen, Shaojie & Chen, Lei & Li, Ke & Liu, Na, 2020. "Impact of coal sector’s de-capacity policy on coal price," Applied Energy, Elsevier, vol. 265(C).
    3. Wei Wu & Boqiang Lin, 2020. "Reducing Overcapacity in China’s Coal Industry: A Real Option Approach," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1073-1093, April.
    4. Wang, Delu & Liu, Yifei & Wang, Yadong & Shi, Xunpeng & Song, Xuefeng, 2020. "Allocation of coal de-capacity quota among provinces in China: A bi-level multi-objective combinatorial optimization approach," Energy Economics, Elsevier, vol. 87(C).
    5. Haonan Zhang & Xingping Zhang & Jiahai Yuan, 2020. "Coal power in China: A multi‐level perspective review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(6), November.
    6. Zhishuang Zhu & Hua Liao, 2019. "Do subsidies improve the financial performance of renewable energy companies? Evidence from China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 241-256, January.
    7. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    8. Ma, Gang & Li, Xu & Zheng, Jianping, 2020. "Efficiency and equity in regional coal de-capacity allocation in China: A multiple objective programming model based on Gini coefficient and Data Envelopment Analysis," Resources Policy, Elsevier, vol. 66(C).
    9. Xuguang Hao & Mei Song & Yunan Feng & Wen Zhang, 2019. "De-Capacity Policy Effect on China’s Coal Industry," Energies, MDPI, Open Access Journal, vol. 12(12), pages 1-1, June.
    10. Zhang, Yanfang & Nie, Rui & Shi, Xunpeng & Qian, Xiangyan & Wang, Ke, 2019. "Can energy-price regulations smooth price fluctuations? Evidence from China’s coal sector," Energy Policy, Elsevier, vol. 128(C), pages 125-135.
    11. Li, Xiaoyu & Yao, Xilong, 2020. "Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic?--- A simulated study on China's coal capacity cut and carbon tax," Energy Policy, Elsevier, vol. 138(C).
    12. Wang, Di & Shen, Ye & Zhao, Yueying & He, Wei & Liu, Xue & Qian, Xiangyan & Lv, Tao, 2020. "Integrated assessment and obstacle factor diagnosis of China's scientific coal production capacity based on the PSR sustainability framework," Resources Policy, Elsevier, vol. 68(C).
    13. Zhang, Weike & Meng, Jia & Tian, Xiaoli, 2020. "Does de-capacity policy enhance the total factor productivity of China's coal companies? A Regression Discontinuity design," Resources Policy, Elsevier, vol. 68(C).
    14. Shanshan Guo & Yanfang Zhang & Xiangyan Qian & Zhang Ming & Rui Nie, 2019. "Urbanization and CO2 emissions in resource-exhausted cities: evidence from Xuzhou city, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 807-826, November.
    15. Han, Shuai & Chen, Hong & Stemn, Eric & Owen, John, 2019. "Interactions between organisational roles and environmental hazards: The case of safety in the Chinese coal industry," Resources Policy, Elsevier, vol. 60(C), pages 36-46.
    16. Cheong, Tsun Se & Li, Victor Jing & Shi, Xunpeng, 2019. "Regional disparity and convergence of electricity consumption in China: A distribution dynamics approach," China Economic Review, Elsevier, vol. 58(C).

    More about this item


    China; Coal; Excess capacity; Over capacity; Capacity cut; KAPSARC Energy Model;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:113:y:2018:i:c:p:478-486. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.